metadata

1 개의 포스트

토스 피플 : 데이터를 ‘이해하는’ 구조를 설계합니다 (새 탭에서 열림)

데이터의 품질은 사후 수습이 아닌 생성 단계의 초기 설계에서 결정되며, 특히 AI 시대에는 사람뿐만 아니라 기계도 데이터의 맥락을 완벽히 이해할 수 있는 의미 기반의 구조 설계가 필수적입니다. 토스는 이를 위해 데이터의 생성부터 활용까지 전 과정을 관리하는 'End-to-End 데이터 거버넌스'를 지향하며, 개발 속도를 저해하지 않으면서도 품질을 높이는 유연한 설계 표준을 구축하고 있습니다. 결과적으로 데이터 아키텍처는 단순한 규칙 강제가 아니라 비즈니스의 빠른 변화 속에서 데이터의 정합성을 유지하고 AI와 사람이 신뢰할 수 있는 기반을 만드는 핵심적인 역할을 수행합니다. **데이터 설계의 본질과 품질 관리의 전환** * 데이터의 품질은 분석 단계에서의 정제가 아니라, 데이터가 처음 만들어지는 순간의 설계(Design)에 의해 결정됩니다. * 서비스가 빠르게 변하는 플랫폼 환경에서는 데이터 수습에 에너지를 쏟는 사후 대응보다, 데이터가 생성되는 흐름부터 구조적으로 정리하는 사전 설계가 중요합니다. * '속도'와 '품질'은 대립하는 가치가 아니며, 설계 시 미래의 변화 가능성을 고려한 유연한 기준선을 마련함으로써 두 가치 사이의 균형을 잡아야 합니다. **AI가 이해할 수 있는 의미 중심의 데이터 구조** * 현대의 데이터 아키텍처는 사람뿐만 아니라 AI가 질문하고 분석하는 시대를 대비하여 기계가 읽을 수 있는(Machine-readable) 형태로 진화해야 합니다. * 단순한 메타데이터 관리를 넘어, 데이터 간의 의미 관계를 명확히 하는 '의미 기반 표준 사전'과 '온톨로지(Ontology)'를 도입하여 AI가 맥락을 놓치지 않도록 설계합니다. * 데이터 간의 연결 고리를 명확히 설계함으로써 AI가 스스로 의미를 추론하며 발생할 수 있는 해석 오류를 줄이고 데이터의 신뢰성을 극대화합니다. **실천적인 데이터 거버넌스와 아키텍트의 역할** * 효과적인 거버넌스는 규칙을 강제하는 것이 아니라, "표준을 따르는 것이 오히려 더 편하다"고 느낄 수 있도록 자연스러운 프로세스를 설계하는 것입니다. * 비즈니스의 빠른 사이클 속에서 모든 것을 완벽하게 설계하기보다, 현재 맥락에 맞으면서도 나중에 무리 없이 정리할 수 있는 '확장성 있는 여지'를 남겨두는 전략이 필요합니다. * 데이터 아키텍트는 거창한 담론에서 시작하는 것이 아니라, 작은 구조 하나를 더 낫게 만들고 싶어 하는 데이터 엔지니어와 분석가 모두가 도달할 수 있는 전문 영역입니다. 데이터 아키텍처는 단순히 테이블 명세서를 관리하는 일이 아니라 비즈니스의 복잡도를 구조로 풀어내는 일입니다. 고품질의 데이터를 유지하면서도 개발 속도를 잃지 않으려면, 초기 설계 단계에서부터 AI와 협업할 수 있는 표준 체계를 구축하고 이를 조직 내에서 자연스럽게 수용할 수 있는 '실현 가능한 거버넌스 모델'을 고민해 보는 것이 좋습니다.