rag

10 개의 포스트

개발자는 AI에게 대체될 것인가 (새 탭에서 열림)

현재의 AI 열풍은 막대한 자본이 투입된 버블의 성격을 띠고 있지만, 장기적으로는 개발자의 업무를 근본적으로 재정의하는 도구로 자리 잡을 것입니다. 개발자는 단순히 코드를 생산하는 역할에서 벗어나, 어떤 업무를 AI에게 '추상화(위임)'하고 어떤 핵심 판단력을 유지할지 결정하는 설계자이자 디렉터의 역량을 요구받게 됩니다. 결국 AI 시대의 생존은 기술적 위임의 경계를 설정하고 시스템의 복잡성을 관리하는 '추상화 능력'에 달려 있습니다. ## AI 하이프와 경제적 불균형의 실체 * **아마라의 법칙과 버블:** 기술의 효과는 단기적으로 과대평가되는 경향이 있으며, 현재 AI 시장은 투자 대비 매출 비율이 16:1(설비투자 5,600억 달러 대비 매출 350억 달러)에 달할 정도로 극심한 불균형 상태입니다. * **실질 수익의 부재:** 생성형 AI 도입 프로젝트의 약 95%가 실패하거나 뚜렷한 효율 개선을 보이지 못하고 있으며, 빅테크의 매출조차 상당 부분 내부 거래에 의존하고 있는 실정입니다. * **인력 감축의 역설:** 현재의 개발자 감원은 AI가 업무를 대체했기 때문이라기보다, 막대한 AI 투자 비용을 충당하기 위한 기업의 비용 절감 전략에서 기인한 측면이 큽니다. ## 제번스 패러독스와 직무의 재정의 * **수요의 폭발:** 에어컨 보급률이 높아질수록 관련 산업이 커지듯, AI로 코딩의 문턱이 낮아지면 소프트웨어에 대한 전체 수요와 활용처는 오히려 기하급수적으로 늘어날 것입니다. * **도구로서의 AI:** 과거 게임 엔진이 소규모 팀에게 프로급 역량을 부여했듯, AI는 개발자를 보조하는 강력한 '파워 툴'이 되어 상위 실력자의 생산성을 극대화합니다. * **역할의 변화:** 개발자의 정체성은 코드 작성자에서 '코드 크리에이티브 디렉터'로 변모하며, 시스템 설계, 에이전트 지휘, 결과물 검증이 업무의 중심이 됩니다. ## 위임의 사분면과 추상화의 본질 * **위임의 기준:** '위임하기 쉬운가(기술적 난이도)'는 모델의 발전에 따라 계속 변하는 일시적인 경계일 뿐이며, 중요한 것은 '위임해야 하는가(책임과 판단)'라는 가치 판단의 축입니다. * **추상화로서의 위임:** AI에게 업무를 맡기는 것은 프로그래밍의 '추상화'와 같습니다. 이는 세부 사항을 숨기고 더 이상 신경 쓰지 않겠다는 선언이며, 복잡성을 미래로 이동시키는 레버리지 역할을 합니다. * **유형별 위임 전략:** 단순 CRUD나 보일러플레이트 코드, 테스트 케이스 등 잘 정의된 문제는 AI에게 맡기되, 아키텍처 결정이나 보안 정책, 법규 대응처럼 인간의 판단이 필수적인 영역은 분리해야 합니다. ## 잘못된 추상화와 미래의 리스크 * **추상화의 붕괴:** 트래픽 급증, 법률 개정(GDPR 등), 제로데이 보안 취약점 같은 예외 상황이 발생하면 AI에게 위임했던 '추상화된 업무'가 한꺼번에 무너질 수 있습니다. * **시니어의 역할:** 시스템의 근본이 흔들릴 때 이를 해결할 수 있는 능력은 결국 풍부한 경험을 가진 시니어 개발자의 몫이며, AI 결과물을 맹목적으로 수용할 경우 추상화가 없는 것보다 더 큰 재앙을 초래할 수 있습니다. * **지속 가능한 리팩토링:** 개발자는 AI에게 어떤 컨텍스트를 제공하고 어떤 부분을 직접 통제할지 업무 프로세스를 끊임없이 리팩토링하며 '좋은 추상화'를 구축해야 합니다. 성공적인 AI 활용을 위해서는 AI를 단순한 대체재가 아닌, 복잡성을 관리하는 추상화 도구로 바라봐야 합니다. 기술 발전 속도에 일희일비하기보다, 기술이 해결할 수 없는 '비즈니스 임팩트'와 '시스템의 안정성'에 대한 인간의 판단력을 고도화하는 것이 AI 시대 개발자의 핵심 경쟁력이 될 것입니다.

엔터프라이즈 LLM 서비스 구축기 1: 컨텍스트 엔지니어링 (새 탭에서 열림)

대규모 엔터프라이즈 환경에서 LLM 서비스를 구축할 때는 정교한 지시어(프롬프트 엔지니어링)보다 AI에게 필요한 정보만 선별해 제공하는 '컨텍스트 엔지니어링'이 더욱 중요합니다. LY Corporation은 260개가 넘는 API와 방대한 문서를 다루는 클라우드 AI 어시스턴트를 개발하며, 컨텍스트의 양이 늘어날수록 모델의 추론 성능이 하락하고 환각 현상이 발생하는 문제를 확인했습니다. 이를 해결하기 위해 사용자의 의도에 맞춰 필요한 도구와 가이드라인만 실시간으로 주입하는 '점진적 공개' 전략과 시스템 프롬프트의 충돌을 방지하는 '모의 도구 메시지' 기법을 도입하여 성능과 정확도를 동시에 확보했습니다. ### 컨텍스트 과부하와 성능의 상관관계 * **정보량과 성능의 반비례**: 최신 LLM은 수십만 토큰의 컨텍스트 윈도우를 지원하지만, 입력 길이가 길어질수록 핵심 정보를 찾는 능력이 최대 85%까지 급격히 하락합니다. * **노이즈로 인한 판단력 저하**: 질문과 유사해 보이지만 실제로는 관계없는 정보(노이즈)가 섞이면 모델이 당당하게 가짜 정보를 생성하는 환각 현상이 빈번해집니다. * **토큰 소모 효율성**: LLM은 이전 대화를 기억하지 못하는 스테이트리스(stateless) 구조이므로, 대화가 길어지고 API의 JSON 응답이 누적되면 64K 토큰 정도의 용량은 순식간에 소모되어 비용과 성능에 악영향을 줍니다. ### 도구 선별을 통한 컨텍스트 절약 * **선별적 로드**: 260개의 모든 API 도구를 한 번에 컨텍스트에 올리지 않고, 사용자의 질문에서 제품군(예: Redis, Kubernetes)을 먼저 식별합니다. * **도구 최적화**: 사용자가 특정 제품에 대해 물을 때만 관련된 소수의 도구(API)만 선별하여 제공함으로써 모델의 인지 부하를 획기적으로 줄입니다. ### 응답 가이드라인과 점진적 공개 전략 * **상황별 지침 주입**: "리소스 변경 시 UI 안내 우선"과 같이 특정 조건에서만 필요한 운영 지침을 '응답 가이드라인'으로 정의하고, 질문의 성격에 따라 필요한 시점에만 선택적으로 로드합니다. * **시스템 프롬프트와 가이드라인의 분리**: 모든 상황에 적용되는 '대원칙'은 시스템 프롬프트에, 특정 상황의 '행동 절차'는 가이드라인에 배치하여 관리 효율을 높입니다. ### 모의 도구 메시지(ToolMessage)를 활용한 환각 방지 * **프롬프트 충돌 문제**: 새로운 가이드라인을 단순히 시스템 프롬프트 뒤에 추가할 경우, 모델이 기존의 대원칙(예: "반드시 검색 결과로만 답변하라")을 무시하고 가이드라인에만 매몰되어 환각을 일으키는 현상이 발생했습니다. * **도구 메시지 전략**: 가이드라인을 시스템 프롬프트에 넣는 대신, 마치 검색 도구를 실행해서 얻은 결과값인 것처럼 '도구 메시지(ToolMessage)' 형식으로 주입합니다. * **전략의 효과**: 이 방식을 통해 LLM은 시스템 프롬프트의 대원칙을 준수하면서도, 주입된 가이드라인을 도구로부터 얻은 최신 정보로 인식하여 훨씬 정확하고 일관된 답변을 생성하게 됩니다. 엔터프라이즈 LLM 서비스의 핵심은 모델의 지능을 믿고 모든 데이터를 던져주는 것이 아니라, 모델이 가장 똑똑하게 판단할 수 있도록 최적의 정보만 정교하게 큐레이션하여 전달하는 설계 능력에 있습니다. 특히 복잡한 비즈니스 로직이나 사내 고유 지식을 반영해야 할 때는 시스템 프롬프트를 비대하게 만드는 대신, 도구 메시지나 동적 컨텍스트 주입 기술을 활용해 모델의 판단 체계를 보호하는 것이 실질적인 해결책이 됩니다.

구글 리서치 20 (새 탭에서 열림)

2025년 구글 리서치는 기초 연구가 실제 제품과 사회적 가치로 연결되는 '혁신의 마법 주기(Magic Cycle)'를 가속화하며 생성형 AI, 과학적 발견, 양자 컴퓨팅 분야에서 기념비적인 성과를 거두었습니다. 제미나이 3(Gemini 3)로 대표되는 모델의 효율성과 사실성 개선은 물론, 스스로 도구를 사용하는 에이전트 모델과 질병 치료를 위한 바이오 AI 기술을 통해 기술적 한계를 한 단계 더 확장했습니다. 이러한 연구 결과는 단순한 기술 진보를 넘어 기후 변화 대응과 교육 등 인류 공통의 과제를 해결하는 데 실질적인 기여를 하고 있습니다. **생성형 모델의 효율성 및 신뢰성 고도화** * **추론 효율성 최적화:** '투기적 디코딩(Speculative decoding)'과 가상 머신 작업 수명을 예측하는 'LAVA' 알고리즘을 도입하여 대규모 클라우드 데이터 센터의 리소스 효율성과 비용 절감을 실현했습니다. * **사실성(Factuality) 강화:** 2021년부터 이어진 LLM 사실성 연구를 집대성하여 제미나이 3를 역대 가장 사실적인 모델로 구축했으며, FACTS 벤치마크 등을 통해 모델의 정보 근거 제시 능력을 입증했습니다. * **다국어 및 다문화 대응:** 오픈 모델인 '젬마(Gemma)'를 140개 이상의 언어로 확장하고, 문화적 맥락을 이해하는 'TUNA' 분류 체계와 'Amplify' 이니셔티브를 통해 글로벌 사용자에게 최적화된 AI 경험을 제공합니다. **생성형 UI와 지능형 에이전트의 등장** * **인터랙티브 인터페이스:** 사용자의 프롬프트에 따라 웹페이지, 게임, 도구 등의 시각적 인터페이스를 실시간으로 생성하는 '생성형 UI'를 제미나이 3에 도입했습니다. * **에이전트 기능(Agentic AI):** 단순 응답을 넘어 복잡한 작업을 수행하는 '프로젝트 자비스(Project Jarvis)'와 웹 브라우징 에이전트를 통해 사용자의 일상 업무를 자동화하는 능력을 선보였습니다. * **코드 및 추론 능력:** 고도화된 추론 아키텍처를 통해 소프트웨어 엔지니어링 성능을 비약적으로 향상시켰으며, 이는 구글 내부 코드의 25% 이상이 AI에 의해 생성되는 결과로 이어졌습니다. **과학적 혁신과 헬스케어의 진보** * **생물학적 발견:** 단백질 구조 예측을 넘어 분자 상호작용을 모델링하는 'AlphaFold 3'와 새로운 단백질을 설계하는 'AlphaProteo'를 통해 신약 개발과 질병 이해의 속도를 높였습니다. * **의료 특화 모델:** 'Med-Gemini'와 같은 의료 전용 모델을 개발하여 흉부 엑스레이 분석, 유전체 데이터 해석 등 전문적인 의료 진단 보조 도구로서의 가능성을 확인했습니다. * **뇌 과학 연구:** 하버드 대학과의 협력을 통해 인간 대뇌 피질의 시냅스 수준 지도를 제작하는 등 신경과학 분야에서도 전례 없는 성과를 냈습니다. **양자 컴퓨팅과 지구 과학을 통한 미래 대비** * **양자 우위와 실용화:** 양자 오류 정정 기술의 혁신을 통해 실제 문제 해결에 활용 가능한 양자 컴퓨팅 시대를 앞당겼습니다. * **기후 및 환경 대응:** 산불을 실시간으로 추적하는 'FireSat' 위성 네트워크와 비행운(Contrails) 감소 연구 등을 통해 기후 위기 대응을 위한 구체적인 AI 솔루션을 제시했습니다. * **책임감 있는 AI:** 콘텐츠의 출처를 밝히는 'SynthID' 워터마킹 기술을 텍스트와 비디오로 확대 적용하여 AI 생성 콘텐츠의 투명성과 안전성을 강화했습니다. 구글의 2025년 성과는 AI가 단순한 보조 도구를 넘어 과학 연구의 속도를 높이고 복잡한 사회 문제를 해결하는 강력한 에이전트로 진화했음을 보여줍니다. 기업과 연구자는 이제 단순한 챗봇 구현을 넘어, 특정 도메인에 특화된 에이전트 모델과 생성형 UI를 활용한 새로운 사용자 경험 설계에 집중해야 할 시점입니다.

혁신의 조명: (새 탭에서 열림)

구글 리서치는 아프리카 전역의 데이터 과학 커뮤니티와 협력하여 현지의 시급한 의료 과제를 해결하기 위한 'Data Science for Health Ideathon'을 개최했습니다. 이 대회는 MedGemma, MedSigLIP 등 구글의 개방형 의료 AI 모델을 활용해 자궁경부암 검진, 모성 건강 지원 등 아프리카 보건 시스템에 실질적인 변화를 가져올 수 있는 솔루션을 개발하는 데 중점을 두었습니다. 최종 선정된 팀들은 구글의 기술 자원과 전문가 멘토링을 통해 아이디어를 구체적인 프로토타입으로 구현하며 지역 맞춤형 AI 혁신의 가능성을 증명했습니다. **협력적 의료 혁신과 기술적 기반** * 르완다 키갈리에서 열린 'Deep Learning Indaba' 컨퍼런스를 기점으로 아프리카 AI 및 의료 커뮤니티 간의 역량 강화를 목표로 시작되었습니다. * 참가자들에게는 MedGemma(의료 LLM), TxGemma(치료제 개발 모델), MedSigLIP(의료 영상 분석 모델) 등 구글의 최신 보건 AI 모델이 제공되었습니다. * 프로젝트 수행을 위해 Google Cloud Vertex AI 컴퓨팅 크레딧과 상세 기술 문서, 구글 DeepMind 연구진의 기술 멘토링이 단계별로 지원되었습니다. **자궁경부암 및 모성 건강을 위한 AI 솔루션** * **Dawa Health (1위):** WhatsApp으로 업로드된 질확대경 영상을 MedSigLIP 기반 분류기로 실시간 분석하여 암 징후를 식별합니다. 여기에 Gemini RAG(검색 증강 생성)를 결합해 세계보건기구(WHO)와 잠비아의 프로토콜에 따른 임상 가이드를 제공합니다. * **Solver (2위):** 자궁경부 세포진 검사 자동화를 위해 MedGemma-27B-IT 모델을 LoRA(Low-Rank Adaptation) 방식으로 파인튜닝했습니다. FastAPI 기반의 웹 앱을 통해 병리 의사에게 주석이 달린 이미지와 임상 권고안을 출력합니다. * **Mkunga (3위):** 모성 건강 상담을 위해 MedGemma와 Gemini를 활용한 AI 콜센터를 구축했습니다. Vertex AI의 TTS/STT(음성 합성 및 인식) 기술을 통해 스와힐리어로 저비용 원격 진료 서비스를 제공합니다. **열악한 통신 환경을 고려한 기술적 접근** * **HexAI (최우수 PoC):** 인터넷 연결이 제한된 환경에서도 작동할 수 있는 오프라인 우선(Offline-first) 모바일 앱 'DermaDetect'를 개발했습니다. * 온디바이스(On-device) 형태의 MedSigLIP 모델을 통해 커뮤니티 건강 요원들이 현장에서 피부 질환을 즉시 분류할 수 있도록 설계되었습니다. * 고도화된 분석이 필요한 경우에만 클라우드 기반의 MedGemma와 연결하는 하이브리드 구조를 채택하여 데이터 플라이휠을 구축했습니다. 이번 사례는 고성능 의료 AI 모델이 오픈소스로 제공될 때, 현지 개발자들이 지역적 특수성과 인프라 한계를 극복하며 얼마나 창의적인 솔루션을 구축할 수 있는지 잘 보여줍니다. 특히 인프라가 부족한 지역에서는 RAG를 통한 신뢰성 확보나 온디바이스 모델링을 통한 오프라인 지원 기술이 의료 격차를 해소하는 핵심적인 전략이 될 수 있음을 시사합니다.

성능 및 확장성이 (새 탭에서 열림)

Amazon S3 Vectors가 정식 출시(GA)되어 클라우드 객체 스토리지에서 기본적으로 벡터 데이터를 저장하고 검색할 수 있는 길이 열렸습니다. 기존 전용 벡터 데이터베이스 대비 비용을 최대 90% 절감할 수 있으며, 서버리스 아키텍처를 통해 인프라 관리 부담 없이 대규모 AI 애플리케이션을 구축할 수 있습니다. 이번 정식 버전은 프리뷰 대비 확장성과 성능이 대폭 강화되어, 대규모 RAG(검색 증강 생성) 및 AI 에이전트 워크로드를 안정적으로 지원합니다. **비약적인 확장성 및 성능 향상** * **인덱스 규모 확장:** 단일 인덱스에서 최대 20억 개의 벡터를 지원하며, 벡터 버킷당 총 20조 개의 벡터를 저장할 수 있어 프리뷰 대비 확장성이 40배 향상되었습니다. * **검색 속도 최적화:** 빈번한 쿼리의 경우 응답 속도를 100ms 이하로 단축했으며, 간헐적인 쿼리도 1초 미만의 지연 시간을 유지하여 실시간 대화형 AI에 적합합니다. * **검색 결과 확대:** 쿼리당 반환 가능한 검색 결과 수를 기존 30개에서 100개로 늘려 RAG 애플리케이션에 더 풍부한 컨텍스트를 제공합니다. * **쓰기 처리량 강화:** 초당 최대 1,000건의 PUT 트랜잭션을 지원하여 실시간 데이터 스트리밍 및 대량의 동시 쓰기 작업을 원활하게 처리합니다. **서버리스 아키텍처를 통한 운영 및 비용 효율화** * **완전 관리형 서비스:** 별도의 인프라 설정이나 프로비저닝이 필요 없는 서버리스 구조로, 사용한 만큼만 비용을 지불하는 종량제 모델을 채택했습니다. * **비용 절감:** 전용 벡터 데이터베이스 솔루션과 비교했을 때 벡터 저장 및 쿼리 비용을 최대 90%까지 낮출 수 있어 경제적입니다. * **개발 수명 주기 지원:** 초기 프로토타이핑부터 대규모 프로덕션 배포까지 동일한 스토리지 환경에서 유연하게 대응할 수 있습니다. **에코시스템 통합 및 가용성 확대** * **Amazon Bedrock 연동:** Amazon Bedrock 지식 기반(Knowledge Base)의 벡터 스토리지 엔진으로 정식 지원되어 고성능 RAG 어플리케이션 구축이 용이해졌습니다. * **Amazon OpenSearch 통합:** S3 Vectors를 스토리지 계층으로 사용하면서 OpenSearch의 강력한 검색 및 분석 기능을 결합하여 사용할 수 있습니다. * **지역 확장:** 프리뷰 당시 5개였던 지원 리전을 서울을 포함한 전 세계 14개 AWS 리전으로 확대하여 접근성을 높였습니다. 전용 벡터 DB 도입에 따른 비용과 운영 복잡성이 부담스러웠던 기업이라면, S3의 높은 가용성과 보안을 그대로 누리면서 대규모 벡터 검색을 구현할 수 있는 S3 Vectors 도입을 적극 검토해 보시기 바랍니다. 특히 Amazon Bedrock과의 유연한 통합을 통해 생산성 높은 AI 서비스를 빠르게 시장에 출시할 수 있습니다.

테스트 타임 디퓨 (새 탭에서 열림)

Google Cloud 연구진이 발표한 **TTD-DR(Test-Time Diffusion Deep Researcher)**은 인간의 반복적인 연구 방식을 모방하여 고품질의 연구 보고서를 작성하는 새로운 프레임워크입니다. 이 시스템은 초안을 '노이즈'가 섞인 상태로 간주하고 검색된 정보를 통해 이를 점진적으로 정제하는 '디퓨전(Diffusion)' 모델의 원리를 도입했습니다. 이를 통해 TTD-DR은 장문 보고서 작성 및 복잡한 다단계 추론 작업에서 기존 모델들을 능가하는 최첨단(SOTA) 성능을 기록했습니다. ### 디퓨전 프로세스를 활용한 보고서 정제 * **노이즈 제거로서의 수정:** 가공되지 않은 거친 초안을 이미지 생성 모델의 '노이즈' 상태로 정의하고, 검색 도구를 통해 확보한 새로운 사실 정보를 '디노이징(Denoising)' 단계로 활용하여 보고서의 품질을 단계적으로 높입니다. * **인간의 연구 패턴 모방:** 계획 수립, 초안 작성, 추가 조사, 피드백 기반 수정으로 이어지는 인간의 비선형적이고 반복적인 연구 과정을 알고리즘화했습니다. * **지속적인 루프:** 단발성 답변 생성에 그치지 않고, 검색된 정보를 바탕으로 기존 초안의 논리를 강화하거나 누락된 정보를 보충하며 최종 결과물에 도달할 때까지 반복 수정을 거칩니다. ### 핵심 아키텍처: 백본 DR 디자인 * **연구 계획 수립:** 사용자 쿼리를 분석하여 최종 보고서에 필요한 핵심 영역을 구조화된 계획서 형태로 우선 생성합니다. * **반복적 검색(Iterative Search):** 계획서와 이전 검색 맥락을 바탕으로 검색 질문을 생성하는 단계(2a)와, 검색된 문서에서 정답을 요약·추출하는 RAG 기반 단계(2b)가 유기적으로 작동합니다. * **최종 보고서 합성:** 수집된 모든 정보(계획서, 질의응답 쌍)를 통합하여 일관성 있고 포괄적인 형태의 전문 보고서를 작성합니다. ### 컴포넌트 단위의 자기 진화(Self-evolution) 알고리즘 * **다양성 확보:** 각 단계에서 여러 답변 변형을 생성하여 더 넓은 탐색 공간에서 최적의 정보를 찾습니다. * **LLM 기반 평가 및 피드백:** 'LLM-as-a-judge' 시스템을 통해 유용성과 포괄성을 평가하고, 자동화된 평점과 텍스트 피드백을 생성하여 수정 방향을 제시합니다. * **교차 결합(Cross-over):** 여러 차례 수정을 거친 다양한 답변 변형들을 하나의 고품질 출력물로 병합함으로써, 각 진화 경로의 장점만을 취합합니다. ### 성능 검증 및 실무적 시사점 * **SOTA 달성:** 장문 작성 벤치마크인 'LongBench-Write'에서 GPT-4o와 O1 등 기존의 강력한 모델들을 뛰어넘는 성능을 입증했습니다. * **복잡한 추론 능력:** HotpotQA, Bamboogle과 같은 다단계(Multi-hop) 추론 작업에서 단순 검색 이상의 깊이 있는 분석 능력을 보여주었습니다. * **적용 권장:** 이 기술은 단순한 정보 나열을 넘어, 논리적 완성도가 중요한 학술적 조사, 기업 분석 보고서, 복잡한 정책 연구 등 전문적인 글쓰기 자동화 분야에 매우 효과적으로 적용될 수 있습니다.

LY Corporation의 AI 기술의 현재, Tech-Verse 2025 후기 (새 탭에서 열림)

Tech-Verse 2025는 LY Corporation이 LINE과 Yahoo Japan의 통합 이후 선보인 AI 전략의 핵심과 실무적인 기술 성과를 집약적으로 보여준 행사였습니다. 이번 컨퍼런스에서는 단순한 기술 트렌드 나열을 넘어, RAG와 MCP 등 최신 AI 기술을 실제 서비스와 개발 환경에 적용하며 겪은 시행착오와 구체적인 해결 방안이 중점적으로 다뤄졌습니다. 특히 AI가 개발 프로세스 전체에 스며들어 생산성과 품질을 동시에 확보하는 기술적 내공이 강조되었습니다. **AI 기반 개발 생산성 혁신: Ark Developer** * 사내 개발자들을 위해 구축된 'Ark Developer'는 RAG 기반의 코드 어시스턴트로, 코드 자동 완성, 리뷰, 보안 확인, 테스트 코드 작성을 지원합니다. * 사내 문서를 스트리밍 형태로 실시간 참조하여 코드의 맥락에 맞는 정확한 도움을 제공하며, GitHub와 연동되어 PR 생성까지 자동화된 워크플로우를 보여줍니다. * 단순히 코드 베이스를 텍스트 뭉치로 취급하는 대신, 디렉토리 구조를 그래프 형태로 분석(Graph Analysis)하여 연관 코드를 더욱 정밀하게 참조하는 기술적 차별점을 갖췄습니다. * 실제 현업 개발자들 사이에서 기존의 범용 AI 도구보다 체감 성능이 뛰어나다는 평가를 받으며 개발 사이클 전반에 깊숙이 통합되어 활용되고 있습니다. **생성형 AI의 품질 측정과 정교한 평가 체계** * 주관성이 강한 이미지 생성 기술의 품질을 관리하기 위해 분포 기반의 FID(Fréchet Inception Distance), IS(Inception Score)와 같은 전통적 지표를 넘어 다각적인 평가 모델을 도입했습니다. * 미적 기준을 측정하는 Aesthetic Score, LLM 기반의 CLIP-IQA 및 Q-Align, 그리고 비디오-언어 모델을 활용한 VQA(Visual Question Answering) 방식 등 정밀한 정량 평가를 수행합니다. * 이미지 번역 및 인페인팅 서비스에서는 단순한 텍스트 변환을 넘어 원래의 레이아웃과 구조까지 자연스럽게 복원해야 하는 복합적인 과제를 생성형 AI로 해결하고 있습니다. * 생성형 AI 기술의 완성도는 단순히 모델을 구현하는 것에 그치지 않고, '어떻게 정답이 없는 결과를 객관적으로 검증하고 개선할 것인가'에 달려 있음을 시사합니다. **실무형 AI 도입을 위한 통찰** 이번 컨퍼런스는 LLM과 에이전트 기술이 실험실을 벗어나 실제 서비스의 품질을 결정짓는 성숙기에 접어들었음을 보여줍니다. 특히 생성형 AI 결과물에 대한 정량적 평가 지표를 수립하고, 코드 베이스를 그래프 구조로 분석하는 등의 구체적인 접근법은 AI 서비스를 고도화하려는 실무자들에게 매우 유용한 벤치마킹 사례가 될 것입니다. 단순한 기술 도입보다는 우리 조직의 데이터 구조와 서비스 특성에 맞는 '평가와 검증 체계'를 먼저 고민하는 것이 품질 높은 AI 서비스를 만드는 핵심입니다.

LY의 테크 컨퍼런스, 'Tech-Verse 2025' 후기 (새 탭에서 열림)

LY Corporation(이하 LY)은 기술 컨퍼런스 'Tech-Verse 2025'를 통해 합병 이후의 플랫폼 통합 전략과 AI 기업으로의 전환 비전을 제시했습니다. LY는 자체 프라이빗 클라우드 구축을 통해 압도적인 비용 절감과 보안 강화를 실현하고, 모든 서비스에 AI 에이전트를 도입하여 사용자 경험을 혁신할 계획입니다. 특히 생성형 AI를 활용한 개발 프로세스의 전면적인 진화로 엔지니어가 서비스 본질에 집중할 수 있는 환경을 구축하는 것이 핵심입니다. **CatalystOne: 고효율 통합 플랫폼 구축** * **자체 클라우드 기반의 비용 최적화**: 퍼블릭 클라우드 대비 약 4배의 비용 절감 효과를 거두고 있으며, 50만 대의 서버와 3Tbps에 달하는 대규모 트래픽을 효율적으로 관리하고 있습니다. * **플랫폼 통합(CatalystOne)**: 합병 후 중복된 인프라를 'CatalystOne'이라는 이름 아래 통합하여 기술, 엔지니어, 시설 등 핵심 자원의 운영 집중도를 높였습니다. * **보안 및 혁신 가속화**: 통합된 플랫폼을 통해 거버넌스를 강화하고, 폭발적인 데이터 성장과 생성형 AI 수요에 기민하게 대응할 수 있는 차세대 프라이빗 클라우드 'Flava'를 구축했습니다. **전 서비스의 AI 에이전트화와 개발 혁신** * **퍼스널 에이전트 구현**: 현재 44개 서비스에 생성형 AI를 도입했으며, 수천만 개의 에이전트를 연계하여 개별 사용자의 니즈를 정교하게 지원하는 것을 목표로 합니다. * **AI 기반 개발 솔루션 도입**: 2025년 7월부터 모든 엔지니어에게 AI 개발 솔루션을 전면 도입하며, RAG(검색 증강 생성) 기술로 사내 지식을 활용해 코드 품질을 높입니다. * **생산성 지표의 획기적 개선**: PoC 결과 'Code Assist'는 96%의 정답률을 기록했고, 'Auto Test' 도입으로 테스트 시간을 97% 단축하는 등 압도적인 개발 효율성 향상을 확인했습니다. **실용적인 결론** LY의 전략은 대규모 인프라를 운영하는 기업이 단순히 AI를 도입하는 것에 그치지 않고, 인프라 통합을 통한 비용 효율화와 AI를 활용한 개발 문화 혁신이 병행되어야 함을 보여줍니다. 특히 엔지니어링 환경에 AI를 적극적으로 이식하여 확보한 리소스를 사용자 가치 증대에 재투자하는 선순환 구조는 기술 기업들이 참고할 만한 모델입니다.

문의 대응을 효율화하기 위한 RAG 기반 봇 도입하기 (새 탭에서 열림)

LY 주식회사의 SR(Service Reliability) 팀은 반복되는 AWX 플랫폼 관련 문의를 효율적으로 처리하기 위해 RAG(검색 증강 생성) 기반의 지원 봇을 도입했습니다. 이 시스템은 사용자가 방대한 가이드 문서를 읽지 않고 중복된 질문을 던질 때 발생하는 운영 리소스 소모 문제를 해결하기 위해 고안되었습니다. 사내 위키와 과거 상담 이력을 활용해 정확도 높은 답변을 생성함으로써 관리자의 개입 없이도 사용자 문제를 신속하게 해결하는 성과를 거두었습니다. **AWX 지원 봇의 기술 스택 및 구성** - **LLM 및 프레임워크:** OpenAI의 GPT 모델을 메인 엔진으로 사용하며, LangChain 프레임워크를 통해 전체적인 워크플로를 관리합니다. Slack과의 연동은 Bolt for Python을 활용했습니다. - **임베딩 모델:** 다국어 지원 및 문장 비교 성능이 뛰어난 'paraphrase-multilingual-mpnet-base-v2' 모델(SBERT)을 선택하여 글로벌 임직원의 다양한 언어 문의에 대응합니다. - **벡터 데이터베이스:** 사내에서 PaaS 형태로 제공되어 접근성이 높은 OpenSearch를 사용하며, 텍스트 데이터를 고차원 벡터로 변환하여 저장하고 검색합니다. **RAG 및 벡터 검색을 통한 답변 정확도 향상** - **LLM의 한계 극복:** 학습되지 않은 최신 정보 부재나 허위 정보 생성(Hallucination) 문제를 해결하기 위해, 질문과 관련된 신뢰할 수 있는 컨텍스트를 LLM에 함께 전달하는 RAG 기법을 적용했습니다. - **벡터 검색 원리:** 사용자의 질문을 임베딩하여 벡터화한 뒤, 벡터 DB 내에서 의미적으로 유사한 문장들을 k-NN(최근접 이웃) 방식으로 검색하여 최적의 참고 자료를 추출합니다. - **유사도 기반 추출:** 단순 키워드 매칭이 아닌 의미적 유사성을 판단하므로, 'Buy'와 'Purchase'처럼 단어는 달라도 맥락이 같은 정보를 정확히 찾아낼 수 있습니다. **봇 워크플로 및 데이터 활용 전략** - **사용자 상호작용:** 사용자가 Slack으로 문의하면 봇이 사내 위키와 과거 Slack 스레드 데이터를 검색합니다. 추출된 데이터를 바탕으로 LLM이 1차 답변을 제공하며, 해결되지 않을 경우에만 '관리자 호출' 버튼을 통해 담당자를 연결합니다. - **데이터 소스 다각화:** 공식 가이드 문서뿐만 아니라 실제 사용자들이 겪었던 문제와 해결책이 담긴 'Slack 문의 스레드 데이터'를 함께 인덱싱하여 실무적인 답변이 가능하도록 구성했습니다. - **리소스 최적화:** 봇의 자동 응답을 통해 단순 반복 문의에 대한 관리자의 수동 대응 시간을 줄이고, 개발 조직이 서비스 운영 본연의 업무에 더 집중할 수 있는 환경을 조성했습니다. RAG 기반 시스템을 구축할 때 가장 중요한 것은 신뢰할 수 있는 데이터 소스의 확보입니다. LY의 사례처럼 공식 문서와 실제 상담 이력을 병행 활용하면 LLM이 훨씬 구체적이고 실무에 유효한 답변을 생성할 수 있습니다. 운영 중인 서비스의 문의 대응 리소스가 부담된다면, 익숙한 벡터 DB와 오픈소스 임베딩 모델을 조합한 RAG 봇 도입을 적극 추천합니다.

검색 증강 생성에 대한 (새 탭에서 열림)

검색 증강 생성(RAG) 시스템의 성능을 최적화하기 위해 단순히 질문과 '관련된' 정보를 찾는 것을 넘어, 답변을 내기에 '충분한 문맥(Sufficient Context)'이 제공되었는지를 판단하는 새로운 관점을 제시합니다. 연구팀은 문맥의 충분성을 측정하는 자동 평가 도구(autorater)를 개발하여 RAG 시스템의 실패 원인을 분석하고 할루시네이션(환각)을 줄일 수 있는 방법론을 입증했습니다. 이를 통해 최신 대규모 언어 모델(LLM)이 충분한 정보 환경에서 어떻게 작동하는지 규명하고, 실제 서비스인 Vertex AI RAG 엔진에 해당 기술을 적용하여 정확도를 개선했습니다. **충분한 문맥의 정의와 필요성** * **관련성 vs 충분성**: 기존 RAG 연구는 질문과 문맥의 '관련성'에 집중했으나, 관련성이 높더라도 정답을 도출하기 위한 핵심 정보가 빠져 있으면 LLM은 잘못된 답변을 내놓을 위험이 큽니다. * **충분한 문맥**: 질문에 대해 확정적인 답변을 제공하는 데 필요한 모든 정보가 포함된 상태를 의미합니다. * **불충분한 문맥**: 질문과 관련은 있지만 정보가 불완전하거나, 결론을 내릴 수 없거나, 모순되는 정보가 포함된 경우를 말합니다. **LLM 기반 자동 평가 도구(Autorater)의 설계 및 성능** * **평가 메커니즘**: 질문과 검색된 문맥 쌍을 입력받아 해당 문맥이 답변에 충분한지 여부를 'True/False'로 분류하며, 체인 오브 쏘트(CoT) 및 1-샷 프롬프팅을 통해 성능을 최적화했습니다. * **높은 분류 정확도**: Gemini 1.5 Pro를 활용한 이 방식은 별도의 미세 조정 없이도 전문가가 직접 레이블링한 데이터와 비교했을 때 93% 이상의 높은 일치율을 보였습니다. * **기존 방식과의 비교**: 정답 키워드 포함 여부를 확인하는 방식이나 기존의 자연어 추론(NLI) 모델 기반 방식보다 Gemini를 활용한 프롬프팅 방식이 뛰어난 문맥 이해력을 바탕으로 더 정교한 판단을 내리는 것으로 나타났습니다. * **효율적 대안**: 계산 자원의 효율성이 필요한 경우, Gemini보다는 다소 성능이 낮지만 미세 조정된 FLAMe(PaLM 24B 기반) 모델이 대안이 될 수 있음을 확인했습니다. **RAG 시스템 성능 분석 및 실무적 통찰** * **SOTA 모델의 특성**: Gemini, GPT, Claude와 같은 최신 모델들은 충분한 문맥이 주어지면 정답률이 매우 높지만, 문맥이 불충분할 때 "모른다"고 답하며 할루시네이션을 방지하는 능력에는 차이가 있었습니다. * **성능 최적화 도구**: 이번 연구의 개념은 Google Cloud Vertex AI RAG 엔진의 'LLM Re-Ranker' 기능으로 구현되었습니다. 이는 검색된 스니펫을 질문과의 관련성 및 충분성에 따라 재정렬하여 nDCG와 같은 검색 지표 및 전체 시스템 정확도를 높입니다. * **실패 분석**: RAG 시스템의 실패는 단순히 검색 품질의 문제뿐만 아니라, 충분한 정보가 있음에도 모델이 이를 제대로 추출하지 못하거나 불충분한 정보에서 억지로 답을 지어내는 과정에서 발생함을 확인했습니다. RAG 시스템의 신뢰도를 높이기 위해서는 단순히 더 많은 문서를 검색하는 것보다, 검색된 결과가 질문에 답하기에 '충분한지'를 먼저 검증하는 단계가 필수적입니다. 개발자는 고성능 LLM을 활용한 자동 평가 단계를 파이프라인에 추가하거나, 리랭커(Re-ranker)를 도입하여 문맥의 질을 관리함으로써 할루시네이션을 획기적으로 줄일 수 있습니다.