visual-reasoning

1 개의 포스트

“생각하고 답변하는” 카카오의 하이브리드 멀티모달 언어모델, Kanana-v-4b-hybrid 개발기 - tech.kakao.com (새 탭에서 열림)

카카오가 개발한 'Kanana-v-4b-hybrid'는 단순한 이미지 인식을 넘어 논리적 추론과 자기 점검 기능을 갖춘 하이브리드 멀티모달 언어모델입니다. 이 모델은 단일 시스템 내에서 일상적인 대화와 복잡한 시각적 추론을 동시에 수행하며, 특히 한국어 특유의 섬세한 제약 조건을 정확히 이해하고 처리하는 데 최적화되어 있습니다. 이를 통해 한국어 기반의 검정고시 및 수능 문항 평가인 KoNET에서 92.8점이라는 높은 성적을 거두며 한국형 AI의 새로운 가능성을 입증했습니다. ### 하이브리드 대응을 위한 단일 모델 구조 * 직관적 응답이 필요한 일반 대화와 논리적 단계가 필요한 추론 모델을 분리하지 않고 하나의 모델로 통합했습니다. * 별도의 라우팅(Routing) 시스템 없이도 한 대화 세션 내에서 시시각각 변하는 질의 성격에 유연하게 대응할 수 있습니다. * 모델 통합을 통해 응답 톤, 포맷, 안전 정책의 일관성을 유지하며, 시스템 운영 복잡도와 유지보수 비용을 획기적으로 낮췄습니다. ### 검증 가능한 결론을 도출하는 시각적 추론 * 이미지를 단순히 설명하는 수준을 넘어, 이미지 내 정보를 종합하고 조건을 적용하여 결론을 도출하는 '시각적 추론'에 집중했습니다. * 모델 스스로 정보 종합, 추론 전개, 결과 검증, 최종 답변의 단계를 거치도록 설계되어 답변의 근거가 명확합니다. * 영수증 검산, 표 기반 조건 필터링, 이미지 기반 수학 문제 풀이 등 단순 OCR로는 해결하기 어려운 복잡한 과제에서 높은 정확도를 보여줍니다. ### 신뢰도를 높이는 자기 점검(Reflection) 메커니즘 * 자신의 추론 과정을 스스로 재검토하여 모순이나 실수 가능성을 찾아내는 자기 점검 기능을 탑재했습니다. * 복잡한 멀티모달 질의에서 발생하기 쉬운 조건 누락이나 사소한 계산 실수를 스스로 발견하고 수정하는 패턴을 보입니다. * 이러한 '자기 수정' 과정은 모델의 단순한 정확성을 넘어, 사용자가 AI의 답변을 믿고 사용할 수 있게 만드는 핵심적인 신뢰 요인이 됩니다. ### 한국어 직관을 보존하는 로컬 추론 프로세스 * '~만 제외하고', '단, ~인 경우에만'과 같은 한국어 특유의 복잡한 예외 및 조건부 표현을 번역 없이 한국어 그대로 사고합니다. * 영문 추론 과정에서 발생할 수 있는 의미 왜곡이나 정보 누락을 방지하여 한국어 질의의 의도를 끝까지 유지합니다. * 이미지 속 한국어 텍스트 정보를 다른 언어로 변환하지 않고 직접 처리함으로써 정보의 손실 없는 논리 전개가 가능합니다. Kanana-v-4b-hybrid는 높은 기술적 완성도를 바탕으로 실제 서비스 환경에서 비용 효율성과 정확성을 동시에 잡으려는 환경에 적합합니다. 특히 한국어 환경에서의 정밀한 업무 보조나 교육용 AI 솔루션처럼 정답의 신뢰도가 중요한 분야에서 이 모델의 하이브리드 추론 능력은 강력한 경쟁력이 될 것입니다.