DrP: 대규모 환경을 위한 (새 탭에서 열림)

Meta가 개발한 **DrP(Root Cause Analysis platform)**는 대규모 시스템에서 발생하는 장애 조사 과정을 프로그래밍 방식으로 자동화하여 평균 복구 시간(MTTR)을 혁신적으로 단축하는 플랫폼입니다. 기존의 수동 조사와 노후화된 플레이북이 유발하는 온콜(On-call) 엔지니어의 피로도 문제를 해결하기 위해, 분석 로직을 코드로 작성하고 실행할 수 있는 통합 환경을 제공합니다. 현재 Meta 내 300개 이상의 팀에서 매일 5만 건 이상의 분석을 수행하며, 장애 복구 시간을 20%에서 최대 80%까지 줄이는 성과를 내고 있습니다. ### DrP의 핵심 구성 요소 * **표현력이 풍부한 SDK**: 엔지니어가 조사 워크플로우를 '분석기(Analyzer)'라는 코드로 구현할 수 있게 돕습니다. 이상 탐지, 시계열 상관관계 분석, 차원 분석 등 복잡한 데이터 분석을 위한 머신러닝 알고리즘과 헬퍼 라이브러리를 포함합니다. * **확장 가능한 백엔드**: 수만 건의 분석을 동시에 처리할 수 있는 멀티 테넌트 실행 환경을 제공하며, 각 분석 작업이 안전하게 격리되어 실행되도록 보장합니다. * **워크플로우 통합 및 후처리**: 알림(Alert) 시스템 및 장애 관리 도구와 긴밀하게 통합되어 장애 발생 시 자동으로 분석을 시작합니다. 분석 후에는 티켓 생성이나 코드 수정 요청(PR)과 같은 후속 조치를 자동으로 수행하는 기능도 갖추고 있습니다. ### 분석기(Analyzer)의 작성 및 실행 흐름 * **코드 기반 플레이북 작성**: 엔지니어는 SDK를 사용하여 장애 조사의 의사결정 트리를 코드로 작성합니다. 이 과정에서 종속된 서비스들의 분석기를 서로 연결(Chaining)하여 복합적인 장애 원인을 추적할 수 있습니다. * **자동화된 검증**: 작성된 분석기는 배포 전 코드 리뷰 도구와 통합된 백테스트(Backtesting) 과정을 거쳐 품질과 신뢰성을 검증받습니다. * **즉각적인 통찰력 제공**: 장애가 감지되면 DrP 백엔드가 즉시 분석기를 가동합니다. 온콜 엔지니어는 장애 알림을 받는 동시에 시스템이 이미 분석해 놓은 근본 원인과 권장 조치 사항을 확인할 수 있습니다. ### 도입 효과 및 운영 가치 * **MTTR의 획기적 단축**: 수동으로 몇 시간씩 걸리던 데이터 수집과 분류 작업을 자동화함으로써 장애 복구 속도를 가속화하고 시스템 가용성을 높입니다. * **온콜 생산성 향상**: 반복적이고 소모적인 디버깅 작업을 기계가 대신 처리하게 함으로써 엔지니어가 더 복잡하고 가치 있는 문제 해결에 집중할 수 있게 합니다. * **조사의 일관성 확보**: 개인의 숙련도에 의존하던 조사 방식을 코드화된 워크플로우로 표준화하여, 어떤 엔지니어가 대응하더라도 동일한 수준의 고품질 분석 결과를 얻을 수 있습니다. **결론적으로**, DrP는 대규모 마이크로서비스 환경에서 발생하는 복잡한 장애를 해결하기 위해 '운영의 코드화'를 실현한 사례입니다. 시스템 규모가 커짐에 따라 수동 대응의 한계를 느끼는 조직이라면, DrP와 같은 자동화된 RCA 플랫폼을 도입하여 인프라의 안정성과 엔지니어의 생산성을 동시에 확보하는 전략이 권장됩니다.

Delivering the Future: 글로벌 해커톤 2025, 준비부터 운영까지 | 우아한형제들 기술블로그 (새 탭에서 열림)

딜리버리히어로 산하 전 세계 7개 엔티티의 기술직군 구성원들이 참여한 ‘글로벌 해커톤 2025’는 글로벌 기술 인재들을 하나로 연결하고 미래의 고객 경험을 혁신하기 위해 개최되었습니다. 우아한형제들 DR팀은 이번 행사의 오거나이저로서 한국에서의 커뮤니티 운영 노하우를 발휘해 서로 다른 시차와 환경을 가진 팀들이 기술적으로 협업할 수 있는 온·오프라인 하이브리드 환경을 구축했습니다. 이를 통해 전 세계 270여 명의 참가자는 구글 클라우드 등 최신 기술 스택을 활용하여 비즈니스 아이디어를 실현하며 글로벌 기술 시너지를 확인했습니다. **글로벌 협업을 위한 행사 기획과 소통 구조** * 전 세계 70여 개국에 퍼져 있는 구성원들의 참여를 독려하기 위해 각국의 공휴일과 휴가 시즌을 면밀히 분석하여 가장 참여도가 높을 것으로 예상되는 일정을 확정했습니다. * 물리적 거리의 한계를 극복하고자 각 엔티티 오피스를 '베이스캠프'로 지정해 오프라인의 몰입감을 유지하는 동시에, 라이브 중계와 온라인 채널을 연계해 전 세계를 실시간으로 연결했습니다. * 시간대 차이로 발생하는 소통의 병목 현상을 해결하기 위해 정기 회의 대신 엔티티별 개별 미팅을 진행하고, 표준화된 가이드 문서와 체크리스트를 배포하여 운영 효율성을 높였습니다. **규제와 실험의 자유를 고려한 기술 환경 구축** * 참가자들이 GCP, AWS, ML 모델 등 각자 익숙한 기술 스택을 자유롭게 활용하면서도, GDPR(EU 일반 개인정보 보호 규정)과 같은 엄격한 글로벌 보안 및 컴플라이언스 규정을 준수하도록 인프라를 설계했습니다. * 딜리버리히어로 중앙 조직이 직접 조율한 공통 기술 가이드를 마련하여 리소스 제공 범위와 데이터 접근 절차를 명확히 규정함으로써 기술적 파편화를 방지했습니다. * 구글 클라우드와의 파트너십을 통해 Google AI 기반 환경을 폭넓게 제공하여, 참가자들이 실제 현업 환경과 유사한 조건에서 고도화된 기술적 실험을 수행할 수 있도록 지원했습니다. **현지 운영과 글로벌 네트워크의 확장** * 근무 형태가 서로 다른 엔티티들이 같은 도시 내 오피스를 개방하고 공유하도록 독려하여, 소속에 관계없이 글로벌 구성원들이 자연스럽게 섞여 협업할 수 있는 분위기를 조성했습니다. * 각 엔티티의 CTO와 CPO가 예선 심사에 직접 참여하고, 딜리버리히어로 글로벌 CTO 및 구글 클라우드 디렉터가 최종 심사를 맡아 프로젝트의 비즈니스 가치와 기술적 완성도를 다각도로 검증했습니다. * 수상 팀에게는 상금과 함께 미국에서 열리는 'Google Cloud Next 2026' 참가 기회를 제공하여 해커톤 이후에도 기술적 성장이 이어질 수 있는 동기를 부여했습니다. 이번 글로벌 해커톤은 거대한 조직 규모와 지리적 제약 속에서도 공통의 기술 가이드와 명확한 운영 원칙이 있다면 전 세계 엔지니어들이 하나의 팀처럼 혁신을 만들어낼 수 있음을 보여주었습니다. 서로 다른 배경을 가진 개발자들이 기술로 소통하며 시너지를 내는 과정은 글로벌 기술 기업으로서의 결속력을 다지는 중요한 발판이 됩니다.

사내 AI 리터러시를 향상하기 위한 AI Campus Day를 개최했습니다 (새 탭에서 열림)

LY Corporation은 전 직군의 AI 리터러시를 높이고 실무 적용을 독려하기 위해 사내 실습 행사 'AI Campus Day'를 개최했습니다. 외부 강사 대신 사내 전문가인 'AI 멘토'를 활용하고 실습 중심의 핸즈온 세션을 구성함으로써, 보안 가이드라인과 사내 업무 환경에 최적화된 실질적인 AI 활용 노하우를 성공적으로 전파했습니다. 이번 행사는 단순한 교육을 넘어 축제 형태의 운영 방식을 도입하여 임직원들이 자발적으로 AI 기술을 탐색하고 업무 생산성을 높이는 계기를 마련했습니다. **실무 역량 강화를 위한 수준별 핸즈온 세션** * **직군별 맞춤 트랙 운영:** 'Common', 'Creative', 'Engineering'의 3개 트랙으로 나누어, 기초 프롬프팅부터 MCP(Model Context Protocol) 서버 구축과 같은 심화 주제까지 총 10개의 세션을 제공했습니다. * **단계별 난이도 설계:** 참가자의 AI 활용 수준에 맞춰 3단계 레벨을 설정하여, 비개발 직군부터 엔지니어까지 누구나 자신의 수준에 맞는 학습이 가능하도록 했습니다. * **철저한 실습 지원 체계:** 흐름을 놓치지 않도록 상세한 '세션 가이드'를 제작 배포하고, 세션마다 2~3명의 조교(총 26명)를 배치하여 현장에서 발생하는 기술적 문제를 즉각 해결했습니다. * **Slack 기반의 소통:** 각 세션별 채널을 통해 실습 결과물을 실시간으로 공유하고 질의응답을 진행하여 참여도를 높였습니다. **사내 콘텍스트를 반영한 AI 멘토링** * **내부 전문가 활용:** 외부 강사 대신 사내에서 이미 AI를 적극적으로 활용 중인 동료 10명을 멘토로 선발하여 현장감 있는 지식을 공유했습니다. * **최적화된 도구 활용:** ChatGPT Enterprise, Gemini, Claude Code 등 사내에서 허용된 도구와 보안 수칙을 100% 반영하여, 배운 내용을 즉시 업무에 적용할 수 있는 환경을 구축했습니다. * **체계적인 콘텐츠 검토:** 운영진은 멘토 가이드를 제공하고, '주제 검토 - 최종 자료 리뷰 - 리허설'로 이어지는 다단계 프로세스를 통해 교육 콘텐츠의 완성도를 확보했습니다. **자발적 참여를 유도하는 축제형 운영** * **캠퍼스 테마 도입:** 수강 신청, 등교, 스탬프 랠리 등 대학교 캠퍼스 컨셉을 활용하여 학습에 대한 심리적 장벽을 낮추고 즐거운 분위기를 조성했습니다. * **몰입형 이벤트 부스:** Gemini를 활용한 AI 포토존, 자체 개발 AI 업무 지원 솔루션 체험, AI 에이전트 콘테스트 홍보 등 다채로운 부스를 운영하여 AI의 효용성을 직접 경험하게 했습니다. * **리더십의 전폭적 지지:** 경영진의 축전 영상을 통해 '업무 대신 AI와 함께 노는 하루'라는 메시지를 전달함으로써, 임직원들이 심리적 부담 없이 행사에 몰입할 수 있는 환경을 만들었습니다. 성공적인 사내 AI 전환(AX)을 위해서는 단순한 도구 보급을 넘어, 사내 보안 가이드와 업무 맥락을 정확히 이해하는 내부 전문가 중심의 실습 교육이 필수적입니다. AI Campus Day와 같이 학습을 '숙제'가 아닌 '축제'로 인식하게 만드는 운영 전략은 구성원들의 자발적인 기술 수용도를 높이는 데 매우 효과적인 접근 방식이 될 것입니다.

더 똑똑하고 효율적인 Kanana-2 오픈소스 공개 - tech.kakao.com (새 탭에서 열림)

카카오는 사용자의 명령 맥락을 파악하고 능동적으로 동작하는 에이전틱 AI(Agentic AI) 구현에 최적화된 차세대 언어모델 'Kanana-2'를 오픈소스로 공개했습니다. 글로벌 프런티어 모델인 Qwen3-30B-A3B와 대등한 성능을 갖춘 이번 모델은 도구 호출(Tool Calling)과 지시 이행 능력을 대폭 강화하여 실무적인 활용도를 극대화했습니다. 특히 한국어 처리 효율성을 30% 이상 개선하고 추론 특화 모델을 라인업에 추가함으로써, 고도화된 논리적 사고가 필요한 서비스 개발에 강력한 토대를 제공합니다. **다양한 연구 및 서비스 요구사항을 충족하는 세 가지 모델 라인업** * **Kanana-2-30b-a3b-base**: 사전 학습 단계의 웨이트를 포함한 기본 모델로, 연구자들이 자체 데이터를 활용해 자유롭게 파인 튜닝하여 새로운 모델을 개발할 수 있는 기초가 됩니다. * **Kanana-2-30b-a3b-instruct**: 사용자의 지시를 정확히 이해하고 수행하는 능력을 극대화한 버전으로, 일반적인 대화 및 작업 수행에 최적화되어 있습니다. * **Kanana-2-30b-a3b-thinking**: 카카오가 처음으로 선보이는 추론 특화 모델로, 수학이나 코딩 등 복잡한 논리적 사고가 필요한 과제에서 뛰어난 성능을 발휘하며 높은 지시 이행 능력을 동시에 유지합니다. **에이전틱 AI 구현을 위한 도구 호출 및 지시 이행 성능 강화** * **Multi-turn Tool Calling**: 외부 도구를 자유자재로 다루는 능력을 이전 모델(Kanana-1.5) 대비 3배 이상 개선하여, 모델 컨텍스트 프로토콜(MCP) 활용성을 극대화했습니다. * **정교한 지시 이행**: 사용자의 복잡하고 단계적인 요구사항을 정확히 파악하여 결과물을 생성하며, 추론 모델에서도 이러한 성능이 저하되지 않도록 설계되었습니다. * **다국어 지원 확대**: 기존 한국어와 영어에 더해 일본어, 중국어, 태국어, 베트남어까지 총 6개 국어를 지원하여 글로벌 서비스 대응 능력을 높였습니다. **대규모 트래픽 처리를 위한 아키텍처 및 효율성 개선** * **MLA(Multi-head Latent Attention)**: 메모리 점유를 압축하여 긴 문맥(Long Context)을 효율적으로 처리할 수 있도록 설계되었습니다. * **MoE(Mixture of Experts)**: 추론 시 필요한 파라미터만 활성화하는 전문가 혼합 구조를 통해 거대 모델의 성능은 유지하면서 연산 비용과 응답 속도를 획기적으로 개선했습니다. * **한국어 최적화 토크나이저**: 새롭게 학습된 토크나이저를 통해 기존 모델 대비 한국어 토큰 효율을 30% 이상 향상시켜, 더 적은 자원으로 빠른 응답(High Throughput)이 가능합니다. **실용적인 결론 및 제안** Kanana-2는 고성능과 효율성을 동시에 잡은 모델로, 특히 한국어 기반의 복잡한 에이전트 서비스를 구축하려는 개발자에게 최적의 선택지입니다. 허깅페이스(Hugging Face)를 통해 Base 모델부터 추론 특화 모델까지 모두 공개되어 있으므로, 목적에 맞는 모델을 선택해 즉시 파인 튜닝하거나 서비스에 적용해 보실 것을 추천합니다.

구글 리서치 20 (새 탭에서 열림)

2025년 구글 리서치는 기초 연구가 실제 제품과 사회적 가치로 연결되는 '혁신의 마법 주기(Magic Cycle)'를 가속화하며 생성형 AI, 과학적 발견, 양자 컴퓨팅 분야에서 기념비적인 성과를 거두었습니다. 제미나이 3(Gemini 3)로 대표되는 모델의 효율성과 사실성 개선은 물론, 스스로 도구를 사용하는 에이전트 모델과 질병 치료를 위한 바이오 AI 기술을 통해 기술적 한계를 한 단계 더 확장했습니다. 이러한 연구 결과는 단순한 기술 진보를 넘어 기후 변화 대응과 교육 등 인류 공통의 과제를 해결하는 데 실질적인 기여를 하고 있습니다. **생성형 모델의 효율성 및 신뢰성 고도화** * **추론 효율성 최적화:** '투기적 디코딩(Speculative decoding)'과 가상 머신 작업 수명을 예측하는 'LAVA' 알고리즘을 도입하여 대규모 클라우드 데이터 센터의 리소스 효율성과 비용 절감을 실현했습니다. * **사실성(Factuality) 강화:** 2021년부터 이어진 LLM 사실성 연구를 집대성하여 제미나이 3를 역대 가장 사실적인 모델로 구축했으며, FACTS 벤치마크 등을 통해 모델의 정보 근거 제시 능력을 입증했습니다. * **다국어 및 다문화 대응:** 오픈 모델인 '젬마(Gemma)'를 140개 이상의 언어로 확장하고, 문화적 맥락을 이해하는 'TUNA' 분류 체계와 'Amplify' 이니셔티브를 통해 글로벌 사용자에게 최적화된 AI 경험을 제공합니다. **생성형 UI와 지능형 에이전트의 등장** * **인터랙티브 인터페이스:** 사용자의 프롬프트에 따라 웹페이지, 게임, 도구 등의 시각적 인터페이스를 실시간으로 생성하는 '생성형 UI'를 제미나이 3에 도입했습니다. * **에이전트 기능(Agentic AI):** 단순 응답을 넘어 복잡한 작업을 수행하는 '프로젝트 자비스(Project Jarvis)'와 웹 브라우징 에이전트를 통해 사용자의 일상 업무를 자동화하는 능력을 선보였습니다. * **코드 및 추론 능력:** 고도화된 추론 아키텍처를 통해 소프트웨어 엔지니어링 성능을 비약적으로 향상시켰으며, 이는 구글 내부 코드의 25% 이상이 AI에 의해 생성되는 결과로 이어졌습니다. **과학적 혁신과 헬스케어의 진보** * **생물학적 발견:** 단백질 구조 예측을 넘어 분자 상호작용을 모델링하는 'AlphaFold 3'와 새로운 단백질을 설계하는 'AlphaProteo'를 통해 신약 개발과 질병 이해의 속도를 높였습니다. * **의료 특화 모델:** 'Med-Gemini'와 같은 의료 전용 모델을 개발하여 흉부 엑스레이 분석, 유전체 데이터 해석 등 전문적인 의료 진단 보조 도구로서의 가능성을 확인했습니다. * **뇌 과학 연구:** 하버드 대학과의 협력을 통해 인간 대뇌 피질의 시냅스 수준 지도를 제작하는 등 신경과학 분야에서도 전례 없는 성과를 냈습니다. **양자 컴퓨팅과 지구 과학을 통한 미래 대비** * **양자 우위와 실용화:** 양자 오류 정정 기술의 혁신을 통해 실제 문제 해결에 활용 가능한 양자 컴퓨팅 시대를 앞당겼습니다. * **기후 및 환경 대응:** 산불을 실시간으로 추적하는 'FireSat' 위성 네트워크와 비행운(Contrails) 감소 연구 등을 통해 기후 위기 대응을 위한 구체적인 AI 솔루션을 제시했습니다. * **책임감 있는 AI:** 콘텐츠의 출처를 밝히는 'SynthID' 워터마킹 기술을 텍스트와 비디오로 확대 적용하여 AI 생성 콘텐츠의 투명성과 안전성을 강화했습니다. 구글의 2025년 성과는 AI가 단순한 보조 도구를 넘어 과학 연구의 속도를 높이고 복잡한 사회 문제를 해결하는 강력한 에이전트로 진화했음을 보여줍니다. 기업과 연구자는 이제 단순한 챗봇 구현을 넘어, 특정 도메인에 특화된 에이전트 모델과 생성형 UI를 활용한 새로운 사용자 경험 설계에 집중해야 할 시점입니다.

비용, 성능, 안정성을 목표로 한 지능형 로그 파이프라인 도입 (새 탭에서 열림)

네이버의 통합 데이터 플랫폼 AIDA 내 로그 수집 시스템인 'Logiss'는 대규모 로그 파이프라인을 운영하며 겪었던 무중단 배포의 한계, 리소스 낭비, 로그 중요도 미분류 문제를 해결하기 위해 지능형 파이프라인을 도입했습니다. 핵심은 Storm의 멀티 토폴로지 구성을 통한 블루-그린 배포 구현과 실시간 트래픽 상태에 따라 처리 속도를 동적으로 조절하는 지능형 제어 알고리즘의 적용입니다. 이를 통해 서비스 중단 없는 배포는 물론, 인프라 비용을 약 40% 절감하고 장애 시 핵심 로그를 우선 처리하는 안정성까지 확보하며 성능과 비용의 최적점을 찾아냈습니다. **멀티 토폴로지와 블루-그린 배포를 통한 무중단 운영** * 기존 Traffic-Controller는 단일 토폴로지 구조로 인해 배포 시마다 데이터 처리가 3~8분간 중단되는 문제가 있었으나, 이를 해결하기 위해 멀티 토폴로지 기반의 블루-그린 배포 방식을 도입했습니다. * Storm 2.x의 `assign` 방식 대신 Kafka의 컨슈머 그룹 관리 기능을 활용하는 `subscribe` 방식으로 내부 로직을 커스텀 변경하여, 여러 토폴로지가 동일 파티션을 중복 소비하지 않도록 개선했습니다. * 이를 통해 트래픽이 몰리는 낮 시간대에도 중단 없이 안전하게 신규 기능을 배포하고 점진적인 트래픽 전환이 가능해졌습니다. **지능형 트래픽 제어를 통한 리소스 최적화** * 낮과 밤의 트래픽 차이가 5배 이상 발생하는 환경에서 피크 타임 기준으로 장비를 고정 할당하던 비효율을 제거하기 위해 '지능형 속도 제어' 알고리즘을 도입했습니다. * Kafka의 랙(lag) 발생량과 백엔드 시스템(OpenSearch 등)의 CPU 부하 상태를 실시간으로 감시하여, 시스템이 여유로울 때는 로그 처리 속도를 자동으로 높여 적체를 빠르게 해소합니다. * 유동적인 속도 조절 덕분에 기존 대비 투입 장비 리소스를 약 40% 절감하는 성과를 거두었으며, 갑작스러운 트래픽 유입에도 유연하게 대응할 수 있게 되었습니다. **로그 중요도 기반의 우선순위 처리** * 모든 로그를 동일한 속도로 처리하던 방식에서 벗어나, 비상 상황 발생 시 서비스 핵심 로그가 먼저 처리될 수 있도록 우선순위(High, Medium, Low) 개념을 도입했습니다. * 트래픽 지연이 발생하면 중요도가 낮은 로그의 처리 속도는 제한하고, 사업 및 서비스 운영에 필수적인 핵심 로그는 지연 없이 전송되도록 파이프라인 가용성을 확보했습니다. **저장소별 차등 샘플링을 통한 비용 절감** * 실시간 검색을 위한 OpenSearch와 장기 보관을 위한 랜딩 존(Landing Zone)에 데이터를 전송할 때, 각 저장소의 목적에 맞게 샘플링 비율을 다르게 설정할 수 있는 기능을 구현했습니다. * 모든 데이터를 무조건 100% 저장하는 대신, 분석 목적에 따라 일부 샘플링만으로 충분한 로그는 저장량을 줄여 인덱싱 부하를 낮추고 스토리지 비용을 효율적으로 관리할 수 있게 되었습니다. 대규모 로그 파이프라인 운영에서 비용 효율과 안정성은 상충하기 쉬운 가치이지만, 시스템의 상태를 실시간으로 파악하고 제어하는 '지능형' 로직을 통해 두 마리 토끼를 모두 잡을 수 있습니다. 특히 스트리밍 처리 프레임워크의 제약 사항을 직접 커스텀하여 비즈니스 요구사항에 맞춘 최적화 사례는 유사한 데이터 플랫폼을 운영하는 기술진에게 실무적인 통찰을 제공합니다.

Meta Ray-Ban 디 (새 탭에서 열림)

메타(Meta)의 가장 진보된 AI 안경인 '메타 레이밴 디스플레이(Meta Ray-Ban Display)'는 스타일과 기술의 경계를 허물며 웨어러블 디바이스의 새로운 기준을 제시합니다. 이 프로젝트는 하드웨어 설계의 물리적 한계와 AR 전용 사용자 인터페이스(UI) 개발이라는 복잡한 과제를 해결하며, 단순한 안경을 넘어선 고도의 컴퓨팅 환경을 구축하는 데 집중했습니다. 결과적으로 신경계 손목밴드(EMG Band)와의 결합을 통해 인간과 컴퓨터의 상호작용 방식을 근본적으로 혁신하고자 하는 비전을 담고 있습니다. **차세대 디스플레이 및 하드웨어 설계** * 안경이라는 제한된 폼팩터 내에서 고성능 디스플레이를 구현하기 위해 기존 하드웨어 설계를 뛰어넘는 독창적인 기술이 적용되었습니다. * 하드웨어 설계 과정에서 입자 물리학(Particle Physics)의 원리를 비유적으로 활용할 만큼 정밀하고 복잡한 엔지니어링 접근 방식을 채택했습니다. * 단순한 시각 정보 전달을 넘어 AI 기능이 실시간으로 구동될 수 있는 최적화된 하드웨어 구조를 갖추었습니다. **근전도(EMG) 손목밴드와의 통합** * 메타 뉴럴 밴드(Meta Neural Band)라고 불리는 EMG 손목밴드와 연동되어 작동하며, 이는 안경의 제어 방식을 획기적으로 개선합니다. * 근육의 미세한 전기 신호를 감지하여 사용자의 의도를 파악함으로써, 별도의 물리적 버튼이나 큰 동작 없이도 안경의 기능을 제어할 수 있습니다. * 이러한 결합은 웨어러블 기기가 인체의 일부처럼 자연스럽게 작동하도록 만드는 핵심 요소입니다. **AR 환경을 위한 새로운 UI 패턴** * 스마트폰이나 PC와는 완전히 다른, 안경 형태의 디바이스에 최적화된 새로운 UI 디자인 패턴을 개발했습니다. * 사용자의 시야를 가리지 않으면서도 필요한 정보를 직관적으로 전달할 수 있는 사용자 경험(UX) 설계에 집중했습니다. * 초기 프로토타입 단계인 'Zero'에서 제품의 완성도를 높이는 'Polish' 단계까지 끊임없는 반복 수정을 거쳐 인터페이스를 다듬었습니다. **점진적 혁신을 중시하는 개발 문화** * 빠르게 변화하는 기술 환경 속에서 최종 결과물뿐만 아니라 과정 중의 작은 성취(Incremental Wins)를 축하하고 공유하는 문화를 유지합니다. * 서로 다른 분야의 엔지니어들이 협업하며 하위 수준의 프레임워크부터 상위 사용자 기능까지 유기적으로 연결하는 구조를 지향합니다. 메타 레이밴 디스플레이의 개발 사례는 하드웨어와 소프트웨어, 그리고 인간 공학의 경계에서 발생하는 난제들을 어떻게 해결해야 하는지 보여줍니다. 미래의 웨어러블 엔지니어링은 단순히 기기를 만드는 것이 아니라, 일상에 스며드는 '보이지 않는 기술'을 구현하기 위해 물리학적 정밀함과 심도 있는 UX 연구를 병합하는 방향으로 나아가야 할 것입니다.

안전은 기본, 비용 절감은 덤: AI 서비스에 별도 가드레일이 필요한 이유 (새 탭에서 열림)

AI 가드레일은 모델의 오동작을 막는 필수 안전장치이지만, 단순히 시스템 프롬프트에 규칙을 심는 방식은 모델 본연의 성능 저하와 예기치 못한 부작용을 초래할 수 있습니다. 시스템 프롬프트는 규칙의 위치나 미세한 수정에 따른 출력 변동성에 매우 민감하기 때문에, 모델 외부에서 입출력을 검증하는 별도의 가드레일 체계를 구축하는 것이 보안과 서비스 안정성 측면에서 더욱 효율적입니다. ### 시스템 프롬프트 기반 가드레일의 과도한 거절 문제 * 시스템 프롬프트에 강력한 안전 규칙을 부여하면, 모델이 전체적으로 보수적인 태도를 취하게 되어 무해한 질문까지 거절하는 위양성(False Positive) 확률이 높아집니다. * 연구 결과에 따르면 안전 프롬프트 추가 시 전체 쿼리의 임베딩이 '거절' 방향으로 이동하며, "Python 프로세스를 죽이는(kill) 방법"과 같은 기술적인 질문조차 위험한 요청으로 오인하여 거절하는 패턴이 관찰됩니다. * 이는 보안 강도와 사용자 경험(정상적인 답변 수신) 사이의 트레이드오프를 심화시켜 모델의 유용성을 떨어뜨리는 원인이 됩니다. ### 프롬프트 위치 및 순서에 따른 위치 편향(Position Bias) * LLM은 긴 컨텍스트 안에서 처음과 끝부분의 정보는 잘 인식하지만, 중간에 위치한 정보는 간과하는 'Lost in the Middle' 현상을 보입니다. * 여러 제약 조건이 섞여 있는 경우, 가드레일 규칙이 시스템 프롬프트의 어느 지점에 위치하느냐에 따라 모델이 해당 규칙을 지키는 가중치가 달라집니다. * 실험 결과에 따르면 난이도가 높은 제약을 앞쪽에 배치할 때 성능이 가장 좋으며, 가드레일 규칙이 중간이나 뒤로 밀려날 경우 보안 성능이 일정하게 유지되지 않는 불안정성을 보입니다. ### 미세한 수정이 유발하는 성능의 나비효과 * 시스템 프롬프트 내의 아주 사소한 변화(공백 추가, "감사합니다" 문구 삽입 등)만으로도 모델의 결정 경계가 이동하여 전체 예측 값의 10% 이상이 바뀔 수 있습니다. * 특히 출력 형식을 지정(JSON/XML)하거나 특정 탈옥 방지 문구를 섞는 행위가 모델의 내부 추론 경로를 완전히 바꾸어, 일부 작업에서 성능이 급락하는 '재앙적인 수준의 붕괴'가 발생하기도 합니다. * 안전 규칙, 스타일, 형식 등 수십 줄의 요구사항을 하나의 시스템 프롬프트에 담을 경우, 한 줄의 수정이 모델이 어떤 규칙을 우선시할지에 대한 예측 불가능한 변화를 일으킵니다. ### 별도 가드레일 적용을 통한 보완과 추천 * 모델 본연의 성능을 유지하면서도 안전성을 확보하기 위해서는 모델 앞뒤에 독립적인 보안 게이트(별도 가드레일)를 세우는 방식이 효과적입니다. * 사용자의 입력 단계에서 위험을 감지해 차단(Tripwires)하거나 안전하게 재작성(Rewriter)하여 전달하고, 모델의 응답 후에도 다시 한번 결과를 점검하는 다층 방어 체계를 구축해야 합니다. * 이를 통해 시스템 프롬프트의 복잡도를 낮추고, 보안 정책의 수정이 모델의 전체 성능(추론 로직)에 직접적인 영향을 주지 않도록 분리하는 것이 실무적으로 권장됩니다.

MongoDB 8.0 업그레이드 해야하는 12가지 이유 - tech.kakao.com (새 탭에서 열림)

MongoDB 8.0은 기존 버전에서 지적받았던 성능상의 아쉬움을 해결하고 안정성을 극대화하는 데 초점을 맞춘 중대한 업데이트입니다. 약 5년의 장기 지원 정책을 도입하여 운영의 지속성을 보장하며, 쓰기 처리량 향상과 쿼리 최적화 등 기술적 아키텍처 개선을 통해 실질적인 성능 이득을 제공합니다. 특히 대규모 트래픽을 처리하는 환경에서 쓰기 지연 시간을 줄이고 복제 효율을 높인 점이 이번 버전의 핵심적인 결론입니다. **장기 지원 정책과 온프레미스 지원 확대** * MongoDB 8.0은 출시 후 5년간(2029년 10월까지) 지원되는 사실상의 LTS(Long-Term Support) 버전으로, 잦은 업그레이드 부담을 줄여줍니다. * 기존에 클라우드(Atlas)에만 우선 적용되던 최신 기능들을 온프레미스 환경에서도 마이너 릴리스를 통해 빠르게 도입할 수 있도록 정책이 변경되었습니다. * 이를 통해 운영 조직은 안정 중심의 운영과 신규 기능 도입 사이에서 유연한 전략을 선택할 수 있는 기반을 마련했습니다. **Write Concern "majority" 성능의 혁신적 개선** * 쓰기 완료 판단 기준을 데이터가 파일에 물리적으로 기록되는 시점(`lastApplied`)에서 Oplog에 기록되는 시점(`lastWritten`)으로 변경했습니다. * 이러한 내부 동작 방식의 변화로 세컨더리 노드의 적용 대기 시간이 단축되어, 쓰기 처리량이 이전 버전 대비 약 30~47% 향상되었습니다. * 세컨더리에서 즉시 읽기 시 발생할 수 있는 데이터 일관성 문제는 '인과적 일관성 세션'을 통해 보완 가능하도록 설계되었습니다. **벌크 쓰기(Bulk Write) 및 Oplog 처리 최적화** * 단일 요청으로 여러 컬렉션에 대한 대량 작업을 동시에 수행할 수 있는 새로운 데이터베이스 명령어가 도입되었습니다. * 기존에 문서마다 개별적으로 생성되던 Oplog 엔트리를 최대 500개까지 하나로 묶어 기록하는 최적화가 적용되었습니다. * 이 개선을 통해 세컨더리 노드의 복제 지연(Replication Lag) 발생 가능성이 크게 낮아지고 전체적인 쓰기 효율이 개선되었습니다. **단건 조회 최적화를 위한 Express Plan 도입** * `_id` 기반의 단건 조회나 유니크 인덱스를 사용하는 쿼리에 대해 복잡한 옵티마이저 과정을 생략하는 'Express Plan'이 추가되었습니다. * 쿼리 파싱 직후 즉시 실행 경로를 확보함으로써 불필요한 플래닝 오버헤드를 제거하고 응답 속도를 극대화했습니다. * 이는 빈번하게 발생하는 PK 기반 조회의 효율을 높여 전체 시스템의 리소스 소모를 줄여주는 효과를 제공합니다. MongoDB 8.0은 성능 저하에 대한 우려를 불식시키기 위해 아키텍처 수준의 최적화를 대거 반영한 버전입니다. 5년이라는 긴 지원 기간과 가시적인 성능 향상을 고려할 때, 대규모 분산 환경을 운영하는 조직이라면 안정화 기간을 거친 후 8.0으로의 업그레이드를 적극적으로 검토할 것을 추천합니다. 특히 쓰기 성능 병목이나 복제 지연 문제를 겪고 있는 서비스에 강력한 해결책이 될 것입니다.

배달의민족 주문접수 채널에 Flutter를 도입하며 고민한 것 | 우아한형제들 기술블로그 (새 탭에서 열림)

배달의민족 주문접수 채널은 다양한 디바이스 환경에 대응하고 개발 생산성을 극대화하기 위해 Flutter와 클린 아키텍처를 도입했습니다. 단일 코드베이스를 통해 Android, macOS 등 멀티 플랫폼 지원을 효율화하는 한편, 플랫폼별 차이는 추상화 계층으로 격리하여 유지보수성을 확보했습니다. 나아가 비즈니스 로직의 빠른 변화에 대응하기 위해 Flutter 기반 앱 셸(App Shell)에 웹뷰를 결합한 하이브리드 구조로 진화하며 일관된 사용자 경험을 제공하고 있습니다. ### 멀티 플랫폼 대응을 위한 Flutter 도입과 전략 * Windows, Android, iOS를 넘어 macOS 및 POS 환경까지 확장되는 파트너 요구사항에 대응하기 위해 단일 코드베이스인 Flutter를 선택했습니다. * "Write Once, Run Everywhere"의 이상보다는 플랫폼별 차이(업데이트 방식, 권한 관리 등)를 인정하고 공통 인터페이스로 대응하는 "Write Once, Adapt Everywhere" 접근법을 취했습니다. * 플랫폼별 구현이 다르거나 외부 라이브러리 의존성이 높은 경우, 혹은 테스트를 위해 Mock이 필요한 지점에만 선택적으로 추상화를 적용하여 불필요한 코드 복잡도를 제어했습니다. * 최근 실시간 통신 방식을 MQTT에서 SSE(Server-Sent Events)로 변경할 때, 인터페이스 기반 설계 덕분에 비즈니스 로직 수정 없이 구현체만 교체하여 작업을 완료할 수 있었습니다. ### 클린 아키텍처와 BLoC을 활용한 안정적인 상태 관리 * 계층 간 관심사를 명확히 분리하기 위해 데이터(Data), 도메인(Domain), 프레젠테이션(Presentation), 인프라(Infrastructure) 계층으로 구성된 클린 아키텍처를 적용했습니다. * 상태 관리 도구로는 BLoC(Business Logic Component) 패턴을 채택하여, 이벤트와 상태 변화를 명시적으로 로깅하고 추적함으로써 복잡한 주문 흐름의 디버깅 효율을 높였습니다. * 기능(Feature) 단위로 모듈을 분리하여 각 기능이 독립적으로 동작하고 확장될 수 있는 구조를 마련했습니다. ### 웹뷰 기반 앱 셸(App Shell)로의 전환과 유연성 확보 * 잦은 비즈니스 요구사항 변경에 실시간으로 대응하기 위해, 핵심 로직은 웹(WebView)으로 구현하고 기기 제어 기능은 Flutter(Native)가 담당하는 하이브리드 구조를 도입 중입니다. * Flutter는 프린터 제어, 오디오 출력, 푸시 알림, 로컬 DB 관리 등 하드웨어 및 OS 밀착형 기능을 '앱 셸'로서 제공합니다. * 웹과 Flutter 간의 통신은 JavaScript Bridge를 통해 이루어지며, 이를 통해 앱 스토어 심사 없이도 웹 업데이트만으로 새로운 비즈니스 기능을 즉시 반영할 수 있는 체계를 구축했습니다. 성공적인 멀티 플랫폼 서비스를 위해서는 단일 프레임워크 도입에 그치지 않고, 플랫폼별 차이를 수용할 수 있는 인터페이스 설계와 비즈니스 변화 속도에 맞춘 아키텍처(하이브리드 구조 등)를 전략적으로 선택하는 것이 중요합니다. 특히 클린 아키텍처를 통한 계층 분리는 기술적 부채를 최소화하면서도 급변하는 요구사항에 유연하게 대응할 수 있는 기반이 됩니다.

Temporal이 Netflix의 신뢰할 수 (새 탭에서 열림)

넷플릭스는 배포 시스템인 Spinnaker의 클라우드 작업 안정성을 높이기 위해 '지속 가능한 실행(Durable Execution)' 플랫폼인 Temporal을 도입했습니다. 기존 시스템은 인스턴스 재시작이나 네트워크 일시 오류 발생 시 작업 상태를 잃어버리는 구조적 한계로 인해 약 4%의 배포 실패율을 보였습니다. Temporal 도입 후, 상태 정보를 자동으로 유지하고 장애 시 중단 지점부터 재개하는 방식을 통해 일시적 장애로 인한 실패율을 0.0001%까지 획기적으로 낮추는 성과를 거두었습니다. **기존 Spinnaker 구조와 상태 관리의 한계** * 배포 엔진인 Orca가 Clouddriver에 작업을 요청하면, Clouddriver는 내부 오케스트레이션 엔진을 통해 클라우드 제공업체의 API를 호출하는 구조였습니다. * 작업 상태가 메모리나 휘발성 저장소에 유지되었기 때문에, 클러스터 업데이트나 인스턴스 종료와 같은 운영 작업 중 실행 중인 모든 작업이 유실되거나 일관성이 깨지는 문제가 빈번했습니다. * 복잡한 다단계 클라우드 작업 중 중간 단계에서 오류가 발생하면, 수동으로 개입하여 상태를 정리하거나 재시도 로직을 직접 복잡하게 구현해야만 했습니다. **Temporal을 이용한 지속 가능한 실행 구현** * 비즈니스 로직을 담당하는 '워크플로우(Workflow)'와 외부 API 호출 등 부수 효과를 수행하는 '액티비티(Activity)'를 분리하여 설계했습니다. * Temporal은 작업의 모든 실행 단계를 데이터베이스에 기록(Event Sourcing)하므로, 실행 중 프로세스가 죽더라도 새 인스턴스에서 마지막 상태를 복구하여 즉시 재개할 수 있습니다. * 개발자는 일시적인 네트워크 오류나 API 제한에 대비한 복잡한 재시도 코드를 작성하는 대신, Temporal의 선언적 재시도 정책을 활용해 "장애가 없는 것처럼" 코드를 작성할 수 있게 되었습니다. **도입 결과 및 운영 효율성 향상** * 일시적 장애로 인한 배포 실패율이 4%에서 0.0001%로 감소하며 시스템 신뢰도가 비약적으로 상승했습니다. * CDN 장비 업데이트와 같이 며칠 혹은 몇 주가 소요되는 장기 실행 작업도 타임아웃이나 상태 유실 걱정 없이 안정적으로 관리할 수 있게 되었습니다. * 인프라 운영 팀은 시스템 점검이나 배포를 위해 기존 작업을 강제로 중단하거나 완료될 때까지 기다릴 필요가 없어져 운영 유연성이 크게 확보되었습니다. 복잡한 분산 시스템에서 상태 관리와 재시도 로직을 직접 구현하는 것은 매우 까다롭고 오류가 발생하기 쉽습니다. 넷플릭스의 사례처럼 장기 실행 작업이나 높은 신뢰성이 요구되는 마이크로서비스 환경에서는 Temporal과 같은 워크플로우 엔진을 도입하여 인프라 수준에서 안정성을 보장받는 것이 효율적입니다.

Netflix Live Origin. Xiaomei Liu (새 탭에서 열림)

넷플릭스의 라이브 오리진(Live Origin)은 클라우드 라이브 스트리밍 파이프라인과 자사 콘텐츠 전송 네트워크(CDN)인 오픈 커넥트(Open Connect) 사이에서 콘텐츠 공급을 조율하는 핵심 마이크로서비스입니다. 이 시스템은 다중 파이프라인 구조와 지능적인 세그먼트 선택 로직을 통해 실시간 방송 중 발생할 수 있는 데이터 손실이나 지연을 효과적으로 방지합니다. 결과적으로 넷플릭스는 라이브 환경에서도 VOD 수준의 안정성과 고품질 시청 경험을 전 세계 사용자에게 제공할 수 있게 되었습니다. **다중 파이프라인 기반의 탄력적인 아키텍처** 라이브 스트리밍은 실시간 특성상 프레임 누락이나 세그먼트 손실 같은 결함이 발생할 가능성이 높습니다. 라이브 오리진은 이를 극복하기 위해 다음과 같은 전략을 사용합니다. * **이중화된 파이프라인:** 서로 다른 클라우드 리전에서 독립적으로 운영되는 중복 파이프라인을 운영하여, 한쪽 경로에 결함이 생겨도 다른 경로의 정상 세그먼트를 즉시 선택할 수 있습니다. * **지능적 후보 선택:** 패키저에서 수행된 미디어 검사 메타데이터를 활용하여, 여러 후보 세그먼트 중 가장 품질이 좋은 것을 결정론적 순서에 따라 선택합니다. * **에포크 로킹(Epoch Locking):** 클라우드 인코더 단계부터 적용된 에포크 로킹 기술을 통해 오리진이 여러 파이프라인의 세그먼트 중 최적의 결과물을 일관되게 식별하고 조합할 수 있도록 합니다. **오픈 커넥트와의 스트리밍 최적화** 기존 VOD에 최적화되어 있던 오픈 커넥트(Open Connect) 인프라를 라이브에 맞게 확장하여 효율적인 전송 구조를 구축했습니다. * **요청 병합(Request Collapsing):** 동일한 세그먼트에 대해 수많은 클라이언트 요청이 동시에 몰릴 때, 오리진에는 단 하나의 요청만 보내고 나머지는 응답을 기다리게 하여 서버 부하(Thundering Herd 문제)를 방지합니다. * **세그먼트 템플릿 활용:** 오픈 커넥트 가전(OCA)은 라이브 이벤트 설정 데이터를 기반으로 유효한 세그먼트 범위를 미리 파악하며, 범위를 벗어난 잘못된 요청을 사전에 차단합니다. * **적응형 채우기(Adaptive Fill):** 오리진은 응답 헤더를 통해 OCA에 백업 파이프라인 위치를 알려줍니다. 특정 리전의 오리진에 문제가 발생하면 OCA가 스스로 다른 리전의 오리진으로 전환하여 데이터를 가져옵니다. **효율적인 저장소 관리 및 관찰 가능성** AWS EC2 인스턴스에서 동작하는 라이브 오리진은 대규모 트래픽과 데이터를 관리하기 위해 정교한 리소스 관리 기법을 도입했습니다. * **계층화된 스토리지:** 실시간으로 자주 액세스되는 세그먼트는 RAM에 저장하고, 상대적으로 덜 빈번한 데이터는 SSD에 저장하는 계층 구조를 통해 응답 속도를 극대화했습니다. * **자동 가비지 컬렉션:** 라이브 이벤트의 진행 상황에 맞춰 오래된 세그먼트를 자동으로 삭제하는 시간 기반 가비지 컬렉션을 수행하여 스토리지 공간을 효율적으로 유지합니다. * **실시간 모니터링:** 수천 개의 지표를 실시간으로 수집하여 파이프라인의 건강 상태를 추적하며, 장애 발생 시 즉각적인 대응이 가능한 가시성을 확보하고 있습니다. 라이브 오리진은 단순한 저장소를 넘어 라이브 스트리밍의 안정성을 결정짓는 지능형 브로커 역할을 수행합니다. 실시간 방송의 불확실성을 소프트웨어 계층의 이중화와 지능적 선택 로직으로 해결하고자 하는 기술적 접근은 대규모 라이브 서비스를 설계할 때 중요한 이정표가 됩니다. 특히 클라이언트의 복잡도를 낮추면서 서버 측에서 장애를 복구하는 설계 방식은 사용자 경험을 최우선으로 하는 서비스 기획에 필수적인 요소입니다.

AI가 기본 보안 설계( (새 탭에서 열림)

Meta는 잠재적으로 위험한 OS 및 서드파티 기능을 안전한 기본값(Secure-by-default)으로 래핑하는 프레임워크를 통해 개발자의 속도를 유지하면서도 보안을 강화하고 있습니다. 이러한 프레임워크는 기존 API와 유사한 구조를 가져가고 공개된 안정적 API를 기반으로 설계되어 개발자의 마찰을 최소화하고 채택률을 극대화합니다. 특히 생성형 AI와 자동화 기술을 결합함으로써 대규모 코드베이스 전반에 걸쳐 취약한 패턴을 식별하고 보안 프레임워크로의 전환을 가속화하고 있습니다. ### 기본 보안 프레임워크의 설계 원칙 * **기존 API와의 유사성 유지**: 보안 API를 기존의 익숙한 API와 유사하게 설계하여 개발자의 인지적 부담을 줄이고, 불안전한 코드에서 안전한 코드로의 자동 변환을 용이하게 합니다. * **공개 및 안정적 API 기반 구축**: OS 제조사나 서드파티의 비공개 API 대신 공개된 안정적 API 위에 프레임워크를 빌드하여, OS 업데이트 시 발생할 수 있는 호환성 문제와 유지보수 위험을 방지합니다. * **범용적 사용성 확보**: 특정 보안 사례에만 국한되지 않고 다양한 앱과 OS 버전에서 폭넓게 사용할 수 있도록 소규모 라이브러리 형태로 설계하여 배포와 유지보수의 효율성을 높입니다. ### SecureLinkLauncher(SLL)를 통한 인텐트 하이재킹 방지 * **인텐트 유출 차단**: Android의 인텐트 시스템을 통해 민감한 정보가 외부로 유출되는 '인텐트 하이재킹' 취약점을 해결하기 위해 개발되었습니다. * **의미론적 API 래핑**: `startActivity()`나 `startActivityForResult()` 같은 표준 Android API를 `launchInternalActivity()`와 같은 보안 API로 래핑하여, 내부적으로 보안 검증 절차를 거친 후 안전하게 인텐트를 전송합니다. * **범위 검증(Scope Verification) 강제**: 인텐트가 타겟팅하는 패키지를 명확히 제한함으로써, 악성 앱이 동일한 인텐트 필터를 사용하여 민감한 데이터를 가로채는 것을 원천적으로 방지합니다. ### AI 및 자동화를 활용한 보안 채택 가속화 * **취약 패턴 자동 식별**: 생성형 AI 도구를 활용하여 방대한 코드베이스 내에서 보안에 취약한 API 사용 패턴을 실시간으로 감지합니다. * **코드 마이그레이션 자동화**: AI가 안전하지 않은 API 호출을 적절한 보안 프레임워크 호출로 자동 교체하거나 수정 제안을 제공하여 대규모 코드 전환 비용을 절감합니다. * **일관된 보안 규정 준수**: 자동화된 모니터링을 통해 개발 초기 단계부터 보안 프레임워크 사용을 강제함으로써 전체 에코시스템의 보안 수준을 상향 평준화합니다. 보안을 위해 개발자 경험(DX)을 희생하는 대신, 기존 개발 워크플로우에 자연스럽게 스며드는 도구를 제공하는 것이 핵심입니다. 특히 대규모 조직일수록 AI를 활용한 자동 마이그레이션 전략을 병행하여 보안 프레임워크의 도입 장벽을 낮추고 코드의 안전성을 지속적으로 유지할 것을 권장합니다.

AWS 주간 요약: Amazon ECS (새 탭에서 열림)

2025년 re:Invent 행사 이후에도 AWS는 사용자 편의성과 개발 효율성을 높이기 위한 다양한 서비스 업데이트를 지속적으로 발표하고 있습니다. 이번 주 업데이트의 핵심은 Amazon ECS의 컨테이너 종료 제어 유연성 확보와 Aurora 데이터베이스의 즉각적인 프로비저닝 능력 강화에 있으며, 이를 통해 개발자들은 보다 정밀하고 빠른 클라우드 환경을 구축할 수 있게 되었습니다. **애플리케이션 개발 및 데이터베이스 환경 개선** * **Amazon Aurora DSQL 클러스터 생성 속도 향상:** 데이터베이스 클러스터 생성 시간이 기존 분 단위에서 초 단위로 대폭 단축되었습니다. 이를 통해 개발자는 통합 쿼리 에디터나 AI 기반 개발 도구를 사용하여 신속하게 프로토타이핑을 시작할 수 있습니다. * **Aurora PostgreSQL의 Kiro powers 통합:** AI 보조 코딩을 지원하는 'Kiro powers' 리포지토리와 통합되었습니다. 개발자는 Kiro IDE에서 클릭 한 번으로 설치하여 쿼리, 스키마 관리, 클러스터 작업에 필요한 컨텍스트를 동적으로 로드하고 활용할 수 있습니다. * **Amazon Redshift와 OpenSearch의 Zero-ETL 통합:** 복잡한 데이터 파이프라인 구축 없이도 Redshift의 데이터를 OpenSearch로 실시간 연동하여 검색 및 분석 성능을 극대화할 수 있습니다. **컨테이너 및 서버리스 운영 최적화** * **ECS 및 Fargate의 사용자 정의 정지 신호 지원:** 이제 Fargate 태스크가 컨테이너 이미지에 설정된 특정 정지 신호(예: SIGQUIT, SIGINT)를 인식합니다. 기본값인 SIGTERM 외의 신호가 필요한 애플리케이션도 이제 안전하고 우아한 종료(Graceful Shutdown)가 가능해졌습니다. * **AWS Lambda의 고급 로깅 기능 확장:** 사용자 정의 런타임에서도 JSON 형식의 로깅 및 로그 레벨 제어 기능을 사용할 수 있게 되었습니다. 이를 통해 복잡한 서버리스 환경에서 로그 수집과 디버깅 과정이 더욱 체계화되었습니다. **보안 강화 및 관리 편의성 증대** * **WorkSpaces Secure Browser의 웹 콘텐츠 필터링:** 25개 이상의 사전 정의된 카테고리를 기반으로 웹 접근을 제어할 수 있는 기능이 추가되었습니다. 추가 비용 없이 10개 리전에서 사용 가능하며, 세션 로거(Session Logger)와 통합되어 규정 준수 모니터링이 강화되었습니다. * **Amazon Cognito의 OTP 자동 인증:** 이메일 및 전화번호 확인을 위해 일회성 비밀번호(OTP)를 자동으로 검증하는 기능이 도입되었습니다. 사용자 가입 절차를 간소화하면서도 보안성을 유지할 수 있는 환경을 제공합니다. * **Amazon CloudWatch SDK 최적화:** SDK에서 최적화된 JSON 및 CBOR 프로토콜을 지원하여 데이터 전송 효율과 모니터링 성능을 개선했습니다. re:Invent 2025의 주요 발표와 더불어 이번 주에 업데이트된 세부 기능들을 검토하여 현재 운영 중인 인프라에 적용해 보시기 바랍니다. 특히 Fargate의 정지 신호 커스터마이징이나 Aurora DSQL의 빠른 생성 기능은 개발 및 배포 파이프라인의 효율을 즉각적으로 개선할 수 있는 실질적인 도구가 될 것입니다.

고객은 절대 기다려주지 않는다: 빠른 데이터 서빙으로 고객 만족도를 수직 상승 시키는 법 (새 탭에서 열림)

토스페이먼츠는 가파른 성장세에 따른 데이터 조회 부하를 해결하기 위해 CQRS 아키텍처를 도입하고 Apache Druid를 중심으로 한 데이터 서빙 환경을 구축했습니다. 초기에는 Elasticsearch와 Druid를 결합하여 대규모 시계열 데이터의 실시간 집계와 검색 성능을 확보했으며, 이를 통해 비용 효율성과 시스템 안정성을 동시에 달성했습니다. 현재는 Druid의 조인 제약과 멱등성 문제를 해결하기 위해 StarRocks를 도입하며, 도메인 간 결합이 자유로운 통합 원장 시스템으로 진화하고 있습니다. ### CQRS와 Apache Druid 도입 배경 * **MSA 전환과 DB 분리:** 서비스 규모가 커지며 모놀리식에서 MSA로 전환했으나, DB가 분산되면서 도메인 간 조인이나 통합 조회가 어려워지는 문제가 발생했습니다. * **명령과 조회의 분리:** 읽기 전용 저장소로 Apache Druid를 선택하여 원장 DB(MySQL)의 부하를 줄이고, 수십억 건의 데이터를 저지연으로 조회하는 CQRS 구조를 설계했습니다. * **Druid의 기술적 이점:** 시계열 데이터 최적화, SQL 지원을 통한 낮은 러닝 커브, 모든 컬럼의 비트맵 인덱스(Bitmap Index)화, 그리고 클라우드 네이티브 구조를 통한 비용 효율성을 고려했습니다. ### 데이터 가공 및 메시지 발행 방식 * **CDC 대신 메시지 발행 선택:** 데이터팀이 도메인 로직을 직접 소유해야 하는 CDC 방식 대신, 각 도메인 팀에서 완성된 데이터를 발행하는 방식을 채택하여 시스템 의존성을 Kafka로 단순화했습니다. * **역정규화 테이블 구성:** 복잡한 수단별 원장 데이터를 조회 친화적인 역정규화 테이블로 변환하여 적재했으며, JSON 필드 단위까지 비트맵 인덱스가 생성되어 효율적인 질의가 가능해졌습니다. ### AWS 환경에서의 비용 및 성능 최적화 * **컴퓨팅과 스토리지 분리:** 고가의 네트워크 스토리지(EBS) 대신 S3를 영구 저장소로 활용하고, 쿼리 수행 시에는 로컬 SSD를 사용하여 성능을 9배 이상 향상했습니다. * **스팟 인스턴스 활용:** 데이터가 S3에 안전하게 보관되는 특성을 이용해 개발/테스트 환경에서 스팟 인스턴스를 적극적으로 사용하여 월 5,000만 원 이상의 클라우드 비용을 절감했습니다. * **고가용성 확보:** 네트워크 스토리지 의존성을 제거함으로써 가용 영역(AZ) 간 분산 배치가 유연해져 시스템의 안정성을 높였습니다. ### Druid 운영의 기술적 도전과 극복 * **파편화 및 멱등성 문제:** 데이터가 시점별로 분산되는 파편화 현상을 해결하기 위해 60초 주기 탐지 프로세스와 자동 컴팩션(Compaction)을 도입했습니다. * **Rollup을 통한 성능 극대화:** 동일 차원의 데이터를 자동 집계하여 저장하는 Rollup 기능을 적용해, 수십 초 걸리던 집계 쿼리 응답 속도를 0.5~1초 내외로 99% 이상 개선했습니다. * **ES 하이브리드 아키텍처:** 단일 ID 기반의 고속 검색은 Elasticsearch가 담당하고, 필터링된 결과의 대규모 집계는 Druid가 처리하도록 역할을 분담해 검색 성능을 안정화했습니다. ### StarRocks 도입을 통한 통합 원장 구축 * **조인 및 멱등성 한계 극복:** Druid의 제한적인 조인 기능과 멱등성 처리의 어려움을 해결하기 위해 StarRocks를 새롭게 도입했습니다. * **도메인 간 데이터 결합:** 결제부터 매입, 정산까지 이르는 전체 라이프사이클을 한눈에 볼 수 있는 통합 원장을 구현하여 비즈니스 요구사항에 유연하게 대응하고 있습니다. **결론적으로** 대규모 트래픽 환경에서는 단순한 DB 분리를 넘어 검색(ES), 시계열 집계(Druid), 그리고 복잡한 조인과 멱등성 보장(StarRocks)이라는 각 도구의 장점을 살린 하이브리드 아키텍처 설계가 필수적입니다. 특히 스토리지와 컴퓨팅을 분리한 구조는 비용 절감뿐만 아니라 운영의 유연성을 확보하는 핵심 전략이 됩니다.