라인 / rag

4 posts

line

엔터프라이즈 LLM 서비스 구축기 1: 컨텍스트 엔지니어링 (opens in new tab)

LY Corporation’s engineering team developed an AI assistant for their private cloud platform, Flava, by prioritizing "context engineering" over traditional prompt engineering. To manage a complex environment of 260 APIs and hundreds of technical documents, they implemented a strategy of progressive disclosure to ensure the LLM receives only the most relevant information for any given query. This approach allows the assistant to move beyond simple RAG-based document summarization to perform active diagnostics and resource management based on real-time API data. ### Performance Limitations of Long Contexts * Research indicates that LLM performance can drop by 13.9% to 85% as context length increases, even if the model technically supports a large token window. * The phenomenon of "context rot" occurs when low-quality or irrelevant information is mixed into the input, causing the model to generate confident but incorrect answers. * Because LLMs are stateless, maintaining conversation history and processing dense JSON responses from multiple APIs quickly exhausts context windows and degrades reasoning quality. ### Progressive Disclosure and Tool Selection * The system avoids loading all 260+ API definitions at once; instead, it analyzes the user's intent to select only the necessary tools, such as loading only Redis-related APIs when a user asks about a cluster. * Specific product usage hints, such as the distinction between private and CDN settings for Object Storage, are injected only when those specific services are invoked. * This phased approach significantly reduces token consumption and prevents the model from being overwhelmed by irrelevant technical specifications. ### Response Guidelines and the "Mock Tool Message" Strategy * The team distinguished between "System Prompts" (global rules) and "Response Guidelines" (situational instructions), such as directing users to a console UI before suggesting CLI commands. * Injecting specific guidelines into the system prompt often caused "instruction conflict," where the LLM might hallucinate information to satisfy a guideline while ignoring core requirements like using search tools. * To resolve these conflicts, the team utilized "ToolMessages" to inject guidelines; by formatting instructions as if they were results from a tool execution, the LLM treats the information as factual context rather than a command that might override the system prompt. To build a robust enterprise LLM service, developers should focus on dynamic context management rather than static prompt optimization. Treating operational guidelines as external data via mock tool messages, rather than system instructions, provides a scalable way to reduce hallucinations and maintain high performance across hundreds of integrated services.

line

LY Corporation의 AI 기술의 현재, Tech-Verse 2025 후기 (opens in new tab)

Tech-Verse 2025 showcased LY Corporation’s strategic shift toward an AI-integrated ecosystem following the merger of LINE and Yahoo Japan. The event focused on the practical hurdles of deploying generative AI, concluding that the transition from experimental models to production-ready services requires sophisticated evaluation frameworks and deep contextual integration into developer workflows. ## AI-Driven Engineering with Ark Developer LY Corporation’s internal "Ark Developer" solution demonstrates how AI can be embedded directly into the software development life cycle. * The system utilizes a Retrieval-Augmented Generation (RAG) based code assistant to handle tasks such as code completion, security reviews, and automated test generation. * Rather than treating codebases as simple text documents, the tool performs graph analysis on directory structures to maintain structural context during code synthesis. * Real-world application includes a seamless integration with GitHub for automated Pull Request (PR) creation, with internal users reporting higher satisfaction compared to off-the-shelf tools like GitHub Copilot. ## Quantifying Quality in Generative AI A significant portion of the technical discussion centered on moving away from subjective "vibes-based" assessments toward rigorous, multi-faceted evaluation of AI outputs. * To measure the quality of generated images, developers utilized traditional metrics like Fréchet Inception Distance (FID) and Inception Score (IS) alongside LAION’s Aesthetic Score. * Advanced evaluation techniques were introduced, including CLIP-IQA, Q-Align, and Visual Question Answering (VQA) based on video-language models to analyze image accuracy. * Technical challenges in image translation and inpainting were highlighted, specifically the difficulty of restoring layout and text structures naturally after optical character recognition (OCR) and translation. ## Global Technical Exchange and Implementation The conference served as a collaborative hub for engineers across Japan, Taiwan, and Korea to discuss the implementation of emerging standards like the Model Context Protocol (MCP). * Sessions emphasized the "how-to" of overcoming deployment hurdles rather than just following technical trends. * Poster sessions (Product Street) and interactive Q&A segments allowed developers to share localized insights on LLM agent performance and agentic workflows. * The recurring theme across diverse teams was that the "evaluation and verification" stage is now the primary driver of quality in generative AI services. For organizations looking to scale AI, the key recommendation is to move beyond simple implementation and invest in "evaluation-driven development." By building internal tools that leverage graph-based context and quantitative metrics like Aesthetic Scores and VQA, teams can ensure that generative outputs meet professional service standards.

line

LY의 테크 컨퍼런스, 'Tech-Verse 2025' 후기 (opens in new tab)

LY Corporation’s Tech-Verse 2025 conference highlighted the company's strategic pivot toward becoming an AI-centric organization through the "Catalyst One Platform" initiative. By integrating the disparate infrastructures of LINE and Yahoo! JAPAN into a unified private cloud, the company aims to achieve massive cost efficiencies while accelerating the deployment of AI agents across its entire service ecosystem. This transformation focuses on empowering engineers with AI-driven development tools to foster rapid innovation and deliver a seamless, "WOW" experience for global users. ### Infrastructure Integration and the Catalyst One Platform To address the redundancies following the merger of LINE and Yahoo! JAPAN, LY Corporation is consolidating its technical foundations into a single internal ecosystem known as the Catalyst One Platform. * **Private Cloud Advantage:** The company maintains its own private cloud to achieve a four-fold cost reduction compared to public cloud alternatives, managed by a lean team of 700 people supporting 500,000 servers. * **Unified Architecture:** The integration spans several layers, including Infrastructure (Project "DC-Hub"), Cloud (Project "Flava"), and specialized Data and AI platforms. * **Next-Generation Cloud "Flava":** This platform integrates existing services to enhance VM specifications, VPC networking, and high-performance object storage (Ceph and Dragon). * **Information Security:** A dedicated "SafeOps" framework is being implemented to provide governance and security across all integrated services, ensuring a safer environment for user data. ### AI Strategy and Service Agentization A core pillar of LY’s strategy is the "AI Agentization" of all its services, moving beyond simple features to proactive, personalized assistance. * **Scaling GenAI:** Generative AI has already been integrated into 44 different services within the group. * **Personalized Agents:** The company is developing the capacity to generate millions of specialized agents that can be linked together to support the unique needs of individual users. * **Agent Ecosystem:** The goal is to move from a standard platform model to one where every user interaction is mediated by an intelligent agent. ### AI-Driven Development Transformation Beyond user-facing services, LY is fundamentally changing how its engineers work by deploying internal AI development solutions to all staff starting in July. * **Code and Test Automation:** Proof of Concept (PoC) results showed a 96% accuracy rate for "Code Assist" and a 97% reduction in time for "Auto Test" procedures. * **RAG Integration:** The system utilizes Retrieval-Augmented Generation (RAG) to leverage internal company knowledge and guidelines, ensuring high-quality, context-aware development support. * **Efficiency Gains:** By automating repetitive tasks, the company intends for engineers to shift their focus from maintenance to creative service improvement and innovation. The successful integration of these platforms and the aggressive adoption of AI-driven development tools suggest that LY Corporation is positioning itself to be a leader in the "AI-agent" era. For technical organizations, LY's model serves as a case study in how large-scale mergers can leverage private cloud infrastructure to fund and accelerate a company-wide AI transition.

line

문의 대응을 효율화하기 위한 RAG 기반 봇 도입하기 (opens in new tab)

To address the operational burden of handling repetitive user inquiries for the AWX automation platform, LY Corporation developed a support bot utilizing Retrieval-Augmented Generation (RAG). By combining internal documentation with historical Slack thread data, the system provides automated, context-aware answers that significantly reduce manual SRE intervention. This approach enhances service reliability by ensuring users receive immediate assistance while allowing engineers to focus on high-priority development tasks. ### Technical Infrastructure and Stack * **Slack Integration**: The bot is built using the **Bolt for Python** framework to handle real-time interactions within the company’s communication channels. * **LLM Orchestration**: **LangChain** is used to manage the RAG pipeline; the developers suggest transitioning to LangGraph for teams requiring more complex multi-agent workflows. * **Embedding Model**: The **paraphrase-multilingual-mpnet-base-v2** (SBERT) model was selected to support multi-language inquiries from LY Corporation’s global workforce. * **Vector Database**: **OpenSearch** serves as the vector store, chosen for its availability as an internal PaaS and its efficiency in handling high-dimensional data. * **Large Language Model**: The system utilizes **OpenAI (ChatGPT) Enterprise**, which ensures business data privacy by preventing the model from training on internal inputs. ### Enhancing LLM Accuracy through RAG and Vector Search * **Overcoming LLM Limits**: Traditional LLMs suffer from "hallucinations," lack of up-to-date info, and opaque sourcing; RAG fixes this by providing the model with specific, trusted context during the prompt phase. * **Embedding and Vectorization**: Textual data from wikis and chats are converted into high-dimensional vectors, where semantically similar phrases (e.g., "Buy" and "Purchase") are stored in close proximity. * **k-NN Retrieval**: When a user asks a question, the bot uses **k-Nearest Neighbors (k-NN)** algorithms to retrieve the top *k* most relevant snippets of information from the vector database. * **Contextual Generation**: Rather than relying on its internal training data, the LLM generates a response based specifically on the retrieved snippets, leading to higher accuracy and domain-specific relevance. ### AWX Support Bot Workflow and Data Sources * **Multi-Source Indexing**: The bot references two main data streams: the official internal AWX guide wiki and historical Slack inquiry threads where previous solutions were discussed. * **Automated First Response**: The workflow begins when a user submits a query via a Slack workflow; the bot immediately processes the request and provides an initial AI-generated answer. * **Human-in-the-Loop Validation**: After receiving an answer, users can click "Issue Resolved" to close the ticket or "Call AWX Admin" if the AI's response was insufficient. * **Efficiency Gains**: This tiered approach filters out "RTFM" (Read The F***ing Manual) style questions, ensuring that human administrators only spend time on unique or complex technical issues. Implementing a RAG-based support bot is a highly effective strategy for SRE teams looking to scale their internal support without increasing headcount. For the best results, organizations should focus on maintaining clean internal documentation and selecting embedding models that reflect the linguistic diversity of their specific workforce.