aws

8 개의 포스트

AWS 주간 뉴스 요약 (새 탭에서 열림)

이 글은 2026년 1월 셋째 주 AWS의 주요 기술 업데이트와 커뮤니티 소식을 다루며, 특히 Kiro CLI의 기능 강화와 유럽 주권 클라우드의 정식 출시를 핵심 성과로 제시합니다. 또한 고성능 메모리 최적화 인스턴스인 EC2 X8i의 상용화와 Amazon Quick Suite를 통한 AI 에이전트 활용 사례를 통해 더욱 고도화된 클라우드 생태계를 구축했음을 보여줍니다. 이번 소식은 엔터프라이즈급 성능 요구 사항과 지역별 규제 준수, 그리고 AI 기반 생산성 향상이라는 세 가지 측면에서 AWS의 진보를 요약하고 있습니다. **Kiro CLI의 제어 및 사용자 경험 강화** * 웹 호출(web fetch) URL에 대한 세밀한 제어 기능을 도입하여, 허용 목록(allowlist)과 차단 목록(blocklist)을 통해 에이전트가 접근할 수 있는 URL 범위를 엄격하게 제한할 수 있습니다. * 커스텀 에이전트를 위한 전용 키보드 단축키와 개선된 Diff 뷰를 제공하여, 단일 세션에서 여러 전문화된 에이전트와 협업할 때 발생하는 마찰을 최소화했습니다. **AWS 유럽 주권 클라우드 정식 출시** * 2023년부터 추진해 온 독립적인 클라우드 인프라인 'AWS European Sovereign Cloud'가 모든 고객을 대상으로 정식 서비스(GA)를 시작했습니다. * 유럽 내 가장 엄격한 데이터 주권 및 규제 요건을 충족할 수 있도록 설계되었으며, 포괄적인 AWS 서비스 세트를 제공하여 유럽 고객들의 컴플라이언스 대응을 지원합니다. **메모리 최적화 EC2 X8i 인스턴스 상용화** * AWS 전용 커스텀 Intel Xeon 6 프로세서를 탑재한 EC2 X8i 인스턴스가 정식 출시되었으며, 모든 코어에서 최대 3.9GHz의 터보 주파수를 유지합니다. * SAP 인증을 획득한 이 인스턴스는 클라우드 내 인텔 기반 프로세서 중 최고 수준의 성능과 메모리 대역폭을 제공하여 메모리 집약적인 워크로드에 최적화되어 있습니다. **생산성 향상을 위한 AI 에이전트 및 도구** * AI 에이전트 동료인 'Amazon Quick Suite'를 통해 비즈니스 질문에 답을 구하고 인사이트를 행동으로 전환하는 생산성 활용 사례가 공유되었습니다. * GitHub Actions를 사용하여 Amazon Bedrock AgentCore에 AI 에이전트를 자동 배포하는 방법이 소개되어, 개발자들이 더욱 효율적으로 AI 기능을 운영 환경에 적용할 수 있게 되었습니다. 이번 업데이트는 강력한 보안과 규제 준수가 필요한 유럽 시장부터, 고성능 컴퓨팅이 요구되는 엔터프라이즈 환경, 그리고 실무 효율을 높이는 AI 에이전트 기술까지 폭넓은 영역을 아우르고 있습니다. 기술 조직은 특히 강화된 Kiro CLI와 Bedrock AgentCore 배포 자동화 가이드를 참고하여 사내 AI 에이전트 운영 환경을 최적화하고 개발 생산성을 한 단계 더 끌어올릴 수 있을 것입니다.

수천 개의 API/BATCH 서버를 하나의 설정 체계로 관리하기 (새 탭에서 열림)

토스페이먼츠는 수천 개의 API 서버와 배치 설정을 관리하기 위해 설정을 단순한 텍스트가 아닌 '진화하는 코드'로 정의하여 운영합니다. 복사-붙여넣기식의 중복 설정을 제거하기 위해 오버레이 아키텍처와 템플릿 패턴을 도입했으며, 이를 통해 오타나 설정 오류로 인한 대규모 정산 장애 리스크를 원천 차단합니다. 결과적으로 인프라 설정을 테스트 가능한 영역으로 끌어올려 대규모 하이브리드 클라우드 환경에서도 높은 안정성과 유연성을 확보했습니다. ### 실시간 API 서버: 오버레이와 템플릿의 결합 * **오버레이 아키텍처:** 설정을 `global`, `cluster`, `phase`, `application` 순서의 계층형 구조로 설계하여 하위 계층이 상위 계층의 기본값을 덮어쓰도록 구성했습니다. 이를 통해 공통 설정은 한 번만 정의하고 각 환경에 필요한 차이점만 관리할 수 있습니다. * **템플릿 패턴 도입:** YAML의 단순 오버레이만으로는 해결하기 어려운 긴 문자열(예: JVM 옵션) 내의 특정 값만 수정하기 위해 `{{MAX_HEAP}}`과 같은 변수 치환 방식을 사용합니다. * **동적 설정 주입:** 설정 파일 내부에 파이썬 스크립트를 삽입하여 랜덤 포트 생성이나 외부 API 호출을 통한 동적 값 할당이 가능하며, 클러스터 이름에 따른 조건부 로직을 적용해 복잡한 환경 변수 요구사항을 해결합니다. ### 배치 서버: DSL과 GitOps를 통한 단순화 * **Jenkins 기반의 단순화:** 대규모 정산 데이터를 다루는 배치 환경일수록 단순함이 강력하다는 원칙 아래, Jenkins를 활용하면서도 수동 조작의 단점을 보완하는 방향을 택했습니다. * **Groovy DSL 활용:** Jenkins의 웹 UI를 통한 수동 설정을 배제하고, Groovy 기반의 자체 DSL(Domain Specific Language)을 구축하여 수천 개의 배치 Job을 코드 형태로 관리합니다. * **GitOps 체계:** 모든 배치 설정을 코드 저장소에서 관리하고 CI/CD 파이프라인과 통합함으로써, 개발자가 직접 Jenkins에 접속하지 않고도 표준화된 환경에서 배치 작업을 배포할 수 있도록 개선했습니다. ### 인프라의 코드화와 검증 자동화 * **테스트 가능한 설정:** 설정값에 대한 오타나 논리적 오류를 방지하기 위해 설정 코드에 대한 유닛 테스트를 수행합니다. 이를 통해 수천 개의 설정 중 단 하나의 오타가 치명적인 금융 장애로 이어지는 것을 사전에 방지합니다. * **유연한 확장성:** 고정된 설정 체계에 안주하지 않고, 인프라의 변화와 개발자의 요구사항에 맞춰 설정 인프라 자체가 계속해서 진화할 수 있는 구조를 지향합니다. 단순히 설정 파일을 잘 작성하는 것에 그치지 않고, 인프라 설정을 애플리케이션 코드와 동일한 수준의 설계와 테스트를 거쳐 관리하는 것이 대규모 시스템의 안정성을 보장하는 핵심입니다. 초기에 다소 복잡해 보일 수 있는 오버레이나 DSL 도입은 장기적으로 중복을 제거하고 휴먼 에러를 막는 가장 확실한 투자입니다.

Netflix Live Origin. Xiaomei Liu (새 탭에서 열림)

넷플릭스의 라이브 오리진(Live Origin)은 클라우드 라이브 스트리밍 파이프라인과 자사 콘텐츠 전송 네트워크(CDN)인 오픈 커넥트(Open Connect) 사이에서 콘텐츠 공급을 조율하는 핵심 마이크로서비스입니다. 이 시스템은 다중 파이프라인 구조와 지능적인 세그먼트 선택 로직을 통해 실시간 방송 중 발생할 수 있는 데이터 손실이나 지연을 효과적으로 방지합니다. 결과적으로 넷플릭스는 라이브 환경에서도 VOD 수준의 안정성과 고품질 시청 경험을 전 세계 사용자에게 제공할 수 있게 되었습니다. **다중 파이프라인 기반의 탄력적인 아키텍처** 라이브 스트리밍은 실시간 특성상 프레임 누락이나 세그먼트 손실 같은 결함이 발생할 가능성이 높습니다. 라이브 오리진은 이를 극복하기 위해 다음과 같은 전략을 사용합니다. * **이중화된 파이프라인:** 서로 다른 클라우드 리전에서 독립적으로 운영되는 중복 파이프라인을 운영하여, 한쪽 경로에 결함이 생겨도 다른 경로의 정상 세그먼트를 즉시 선택할 수 있습니다. * **지능적 후보 선택:** 패키저에서 수행된 미디어 검사 메타데이터를 활용하여, 여러 후보 세그먼트 중 가장 품질이 좋은 것을 결정론적 순서에 따라 선택합니다. * **에포크 로킹(Epoch Locking):** 클라우드 인코더 단계부터 적용된 에포크 로킹 기술을 통해 오리진이 여러 파이프라인의 세그먼트 중 최적의 결과물을 일관되게 식별하고 조합할 수 있도록 합니다. **오픈 커넥트와의 스트리밍 최적화** 기존 VOD에 최적화되어 있던 오픈 커넥트(Open Connect) 인프라를 라이브에 맞게 확장하여 효율적인 전송 구조를 구축했습니다. * **요청 병합(Request Collapsing):** 동일한 세그먼트에 대해 수많은 클라이언트 요청이 동시에 몰릴 때, 오리진에는 단 하나의 요청만 보내고 나머지는 응답을 기다리게 하여 서버 부하(Thundering Herd 문제)를 방지합니다. * **세그먼트 템플릿 활용:** 오픈 커넥트 가전(OCA)은 라이브 이벤트 설정 데이터를 기반으로 유효한 세그먼트 범위를 미리 파악하며, 범위를 벗어난 잘못된 요청을 사전에 차단합니다. * **적응형 채우기(Adaptive Fill):** 오리진은 응답 헤더를 통해 OCA에 백업 파이프라인 위치를 알려줍니다. 특정 리전의 오리진에 문제가 발생하면 OCA가 스스로 다른 리전의 오리진으로 전환하여 데이터를 가져옵니다. **효율적인 저장소 관리 및 관찰 가능성** AWS EC2 인스턴스에서 동작하는 라이브 오리진은 대규모 트래픽과 데이터를 관리하기 위해 정교한 리소스 관리 기법을 도입했습니다. * **계층화된 스토리지:** 실시간으로 자주 액세스되는 세그먼트는 RAM에 저장하고, 상대적으로 덜 빈번한 데이터는 SSD에 저장하는 계층 구조를 통해 응답 속도를 극대화했습니다. * **자동 가비지 컬렉션:** 라이브 이벤트의 진행 상황에 맞춰 오래된 세그먼트를 자동으로 삭제하는 시간 기반 가비지 컬렉션을 수행하여 스토리지 공간을 효율적으로 유지합니다. * **실시간 모니터링:** 수천 개의 지표를 실시간으로 수집하여 파이프라인의 건강 상태를 추적하며, 장애 발생 시 즉각적인 대응이 가능한 가시성을 확보하고 있습니다. 라이브 오리진은 단순한 저장소를 넘어 라이브 스트리밍의 안정성을 결정짓는 지능형 브로커 역할을 수행합니다. 실시간 방송의 불확실성을 소프트웨어 계층의 이중화와 지능적 선택 로직으로 해결하고자 하는 기술적 접근은 대규모 라이브 서비스를 설계할 때 중요한 이정표가 됩니다. 특히 클라이언트의 복잡도를 낮추면서 서버 측에서 장애를 복구하는 설계 방식은 사용자 경험을 최우선으로 하는 서비스 기획에 필수적인 요소입니다.

AWS 주간 소식 요약 (새 탭에서 열림)

AWS re:Invent 2025는 단순한 기술 발표를 넘어 AI 어시스턴트가 자율적인 'AI 에이전트'로 진화하는 중대한 변곡점을 시사했습니다. AWS는 개발자들에게 발명의 자유를 제공한다는 핵심 미션을 재확인하며, 자연어로 복잡한 작업을 수행하고 코드를 실행하는 에이전트 중심의 미래 비전을 제시했습니다. 이번 행사는 AI 투자가 실질적인 비즈니스 가치로 전환되는 시점에서 보안, 가용성, 성능이라는 클라우드의 본질적 가치를 다시 한번 강조했습니다. **AI 에이전트 중심의 비즈니스 혁신** * **어시스턴트에서 에이전트로의 진화:** 단순한 답변 제공을 넘어 스스로 계획을 세우고, 코드를 작성하며, 필요한 도구를 호출해 작업을 완수하는 자율형 에이전트가 핵심 기술로 부상했습니다. * **실질적 비즈니스 수익 창출:** AI가 단순한 실험 단계를 지나 기업의 업무를 자동화하고 효율성을 높임으로써 구체적인 재무적 성과를 내기 시작하는 단계에 진입했습니다. * **비결정적 특성에 최적화된 인프라:** 결과가 매번 다를 수 있는 AI 에이전트의 특성(Non-deterministic)을 고려하여, 안전하고 신뢰할 수 있으며 확장이 용이한 전용 인프라를 구축하고 있습니다. **아키텍트의 르네상스와 개발자 생태계** * **설계 역량의 재발견:** 기술적 세부 사항에 매몰되기보다 시스템 전체를 조망하고 설계하는 고수준 아키텍처 역량이 중요해진 '아키텍트의 르네상스' 시대가 도래했습니다. * **커뮤니티 기여의 가치:** 필리핀의 AWS 히어로 라피(Rafi)가 'Now Go Build' 상을 수상한 사례를 통해, 기술 혁신만큼이나 커뮤니티 빌딩과 개발자 역량 강화가 중요함을 강조했습니다. * **발명의 자유(Freedom to Invent):** 지난 20년간 AWS의 중심이었던 개발자들이 창의성을 발휘할 수 있도록 도구와 환경을 제공하는 것이 AWS의 변함없는 목표임을 천명했습니다. **클라우드 기반 기술의 지속적 고도화** * **커스텀 실리콘과 인프라:** 보안, 가용성, 성능이라는 클라우드의 기본 속성을 유지하면서도 AI 워크로드에 최적화된 하드웨어 혁신을 지속하고 있습니다. * **자연어 기반 솔루션 구현:** 사용자가 달성하고자 하는 목적을 자연어로 설명하면 시스템이 실행 가능한 솔루션으로 변환하는 인터페이스의 혁신이 가속화되고 있습니다. AI 에이전트가 주도하는 기술 환경 변화에 대응하기 위해, 기업들은 단순한 챗봇 도입을 넘어 비즈니스 프로세스 자체를 자동화할 수 있는 에이전트 활용 전략을 수립해야 합니다. AWS re:Invent 2025의 주요 세션 영상과 발표 자료가 온디맨드로 제공되고 있으므로, 조직의 요구 사항에 맞는 AI 아키텍처를 재설계하고 새로운 기술 도구들을 선제적으로 검토해 보시길 권장합니다.

Amazon SageMaker HyperPod에서 체크포 (새 탭에서 열림)

Amazon SageMaker HyperPod은 대규모 AI 모델 학습의 효율성을 극대화하기 위해 '체크포인트리스(Checkpointless) 학습'과 '엘라스틱(Elastic) 학습' 기능을 새롭게 출시했습니다. 이 기술들은 하드웨어 장애 발생 시 복구 시간을 획기적으로 단축하고 클러스터 자원 활용도를 자동 최적화하여 전체 개발 주기를 대폭 앞당깁니다. 이를 통해 엔지니어는 인프라 관리 부담에서 벗어나 모델 성능 고도화와 시장 출시 속도 향상에 더욱 집중할 수 있습니다. ### 체크포인트리스 학습을 통한 중단 없는 상태 복구 기존의 체크포인트 기반 복구는 작업 종료, 재시작, 네트워크 설정, 체크포인트 검색 및 로드 등 복잡한 단계를 거치느라 최대 1시간 이상의 다운타임이 발생하곤 했습니다. 체크포인트리스 학습은 이러한 병목 현상을 해결하기 위해 다음과 같은 기술적 요소를 도입했습니다. * **피어 투 피어(P2P) 상태 복제**: 모델의 상태를 클러스터 내의 건강한 노드(Peer)에 실시간으로 복제하여 저장하며, 장애 발생 시 체크포인트를 불러오는 대신 이웃 노드로부터 즉시 상태를 복구합니다. * **복구 시간 단축**: 전통적인 방식 대비 복구 시간을 분 단위로 줄였으며, 내부 테스트 결과 2,000개 이상의 GPU 환경에서도 다운타임을 80% 이상 감소시키는 성과를 보였습니다. * **4가지 핵심 구성 요소**: 집합 통신 초기화 최적화, 캐싱이 가능한 메모리 매핑 데이터 로딩, 프로세스 내 복구(In-process recovery), 그리고 P2P 상태 복제 기술이 유기적으로 결합되어 작동합니다. * **검증된 확장성**: 수만 개의 가속기를 활용한 Amazon Nova 모델 학습에 이미 성공적으로 적용되어 대규모 환경에서의 안정성을 입증했습니다. ### 자원 활용을 극대화하는 엘라스틱 학습 엘라스틱 학습은 클러스터의 가용 자원 상태에 따라 학습 워크로드의 규모를 유연하게 조절하는 기능입니다. 인프라의 가변적인 상황에 맞춰 학습 효율을 최대로 끌어올립니다. * **자동 확장 및 축소**: 클러스터 내에 유휴 자원이 발생하면 학습 규모를 자동으로 확장하고, 추론 서비스와 같은 고우선순위 작업이 몰릴 때는 자원을 즉시 반납하며 축소합니다. * **운영 효율성**: 매주 수동으로 인프라 설정을 변경하던 엔지니어링 시간을 절약할 수 있으며, 클러스터 활용도를 높여 전체 학습 완료 시간을 단축합니다. * **우선순위 기반 할당**: 비즈니스 요구사항에 따라 자원을 재배치함으로써 고비용의 컴퓨팅 자원을 낭비 없이 사용할 수 있도록 지원합니다. ### 실용적인 권장 사항 수천 개의 GPU를 사용하는 초거대 모델 학습 환경에서는 하드웨어 장애가 빈번하게 발생할 수밖에 없습니다. 인프라 장애로 인한 학습 중단 리스크를 최소화하고 싶은 팀은 SageMaker HyperPod의 체크포인트리스 학습을 도입하여 복구 골든타임을 확보할 것을 권장합니다. 특히 가변적인 인프라 환경에서 비용 효율성을 중시한다면 엘라스틱 학습 기능을 활성화하여 클러스터 유휴 자원을 100% 활용하는 전략이 유효할 것입니다.

Amazon OpenSearch Service, GPU 가 (새 탭에서 열림)

Amazon OpenSearch Service가 벡터 데이터베이스의 성능을 극대화하고 비용을 절감하기 위해 서버리스 GPU 가속 및 자동 최적화 기능을 도입했습니다. 이 기능을 통해 사용자는 수십억 건 규모의 벡터 인덱스를 기존보다 최대 10배 빠른 속도와 4분의 1 수준의 비용으로 구축할 수 있으며, 복잡한 수동 튜닝 없이도 최적의 검색 품질을 유지할 수 있습니다. 결과적으로 생성형 AI 애플리케이션 개발에 필요한 대규모 벡터 검색 환경을 훨씬 더 경제적이고 효율적으로 운영할 수 있게 되었습니다. **GPU 가속을 통한 대규모 벡터 데이터베이스 구축** * **성능 및 비용 혁신:** 비가속 환경 대비 인덱싱 속도는 10배 빨라진 반면, 관련 비용은 75%까지 절감되었습니다. 이를 통해 10억 개 규모의 벡터 데이터베이스를 1시간 이내에 생성할 수 있는 놀라운 확장성을 제공합니다. * **서버리스 관리 모델:** 사용자가 직접 GPU 인스턴스를 할당하거나 관리할 필요가 없으며, 실제 처리량에 따른 OCU(OpenSearch Compute Units) 단위로만 비용을 지불하면 됩니다. * **보안 및 통합:** 가속화된 작업은 사용자의 VPC(Amazon Virtual Private Cloud) 내에서 안전하게 격리되어 실행되며, 기존 OpenSearch 서비스의 워크플로우 내에서 자연스럽게 통합됩니다. **자동 최적화(Auto-optimization) 기반 성능 튜닝** * **자동화된 균형 탐색:** 벡터 데이터의 특성에 맞춰 검색 지연 시간, 검색 품질(재현율), 메모리 요구 사항 사이의 최적의 균형점을 시스템이 자동으로 찾아냅니다. * **전문성 장벽 완화:** 과거에는 벡터 인덱스 최적화에 몇 주간의 수동 튜닝과 전문 지식이 필요했으나, 이제는 설정 하나만으로 기본 구성보다 뛰어난 비용 효율성과 재현율을 확보할 수 있습니다. * **유연한 적용 범위:** 새 도메인이나 컬렉션을 생성할 때는 물론, 기존에 운영 중인 환경에서도 설정을 업데이트하여 즉시 최적화 기능을 활성화할 수 있습니다. **실제 적용 방법 및 권장 사항** 생성형 AI 애플리케이션이나 대규모 지식 베이스를 구축하려는 개발자는 AWS 콘솔의 '고급 기능' 섹션에서 GPU 가속을 활성화하는 것만으로 즉시 성능 향상을 경험할 수 있습니다. 기술적으로는 인덱스 설정 시 `index.knn.remote_index_build.enabled` 옵션을 `true`로 설정하여 GPU 기반의 원격 인덱스 빌드를 활성화할 것을 권장하며, 이를 통해 대량의 데이터를 벌크(Bulk) API로 처리할 때 최적의 가속 효과를 얻을 수 있습니다.

클라우드 서비스 사용량 관리를 통한 운영 비용 최적화. 쿠팡 엔지니어링 조직들의 클라우드 비용을 줄이기 위해 들인 노력과… | by 쿠팡 엔지니어링 | Coupang Engineering Blog | Medium (새 탭에서 열림)

쿠팡은 파이낸스 및 엔지니어링 팀의 긴밀한 협력을 통해 클라우드 온디맨드 비용을 최적화하고 재정적 책임을 강화하는 운영 모델을 구축했습니다. 'Hate Waste'라는 리더십 원칙에 따라 데이터 기반의 분석 도구를 도입하고 리소스 사용량을 효율적으로 통제함으로써, 서비스의 신뢰성을 유지하면서도 연간 수백만 달러 이상의 운영 비용을 절감하는 성과를 거두었습니다. **최적화 전담 팀 구성과 데이터 기반 의사결정 체계 구축** * 클라우드 인프라 엔지니어와 TPM(Technical Program Manager)을 중심으로 전담 프로젝트 팀을 구성하여 각 도메인 팀이 클라우드의 가변 비용 모델을 깊이 이해하도록 지원했습니다. * Amazon Athena를 통해 처리된 CloudWatch 데이터와 AWS CUR(Cost & Usage Reports)을 활용하여 실시간 비용 및 사용량을 분석할 수 있는 맞춤형 BI 대시보드를 개발했습니다. * 파이낸스 팀과의 협업을 통해 월별·분기별 예산 준수의 중요성을 강조하고, 각 팀이 주도적으로 리소스를 관리하는 엔지니어링 문화를 정착시켰습니다. **리소스 효율화와 기술적 최적화를 통한 실질적 비용 절감** * **사용량 절감(Use Less):** 비-프로덕션(Non-prod) 환경에서 리소스가 필요할 때만 자동으로 시작되도록 설정하여 해당 환경의 운영 비용을 약 25% 절감했습니다. * **비용 최적화(Pay Less):** 사용량 패턴을 분석하여 방치된 EC2 리소스를 수동으로 제거하고, 인스턴스를 최신 세대로 조정하여 성능 향상과 가용성 확보를 동시에 달성했습니다. * **기술적 수단 활용:** Amazon S3 스토리지 구조를 최적화하고, AWS Spot Instances 및 ARM 기반의 AWS Graviton 인스턴스를 도입하여 데이터 처리 및 저장 비용을 획기적으로 낮추었습니다. 클라우드 비용 관리는 단순히 지출을 줄이는 작업을 넘어, 인프라를 얼마나 더 똑똑하고 효율적으로 활용하느냐에 대한 기술적 성숙도를 의미합니다. 조직 전체가 비용에 대한 주인의식을 갖고 데이터를 바탕으로 리소스를 관리할 때, 비즈니스의 성장과 인프라의 지속 가능성을 동시에 확보할 수 있습니다.

비용 효율성을 위한 클라우드 (새 탭에서 열림)

쿠팡은 재무와 엔지니어링 팀 간의 긴밀한 협력을 통해 클라우드 지출을 최적화하고 재무적 책임감을 강화하는 전략적 로드맵을 실행했습니다. 이를 위해 구성된 중앙 관리 팀(Central team)은 '낭비 지양(Hate Waste)'이라는 기업 원칙 아래 데이터 기반의 분석 도구와 가변 비용 모델을 도입하여 전사적인 비용 관리 문화를 정착시켰습니다. 결과적으로 비즈니스 성장을 저해하지 않으면서도 리소스 사용 효율을 극대화하여 수백만 달러 규모의 온디맨드 비용을 절감하는 성과를 거두었습니다. ### 중앙 관리 팀 조직과 분석 체계 구축 * 인프라 엔지니어와 기술 프로그램 매니저(TPM)로 구성된 중앙 팀을 조직하여 각 도메인 팀이 클라우드 효율성을 스스로 관리할 수 있도록 지원했습니다. * Amazon CloudWatch, Amazon Athena, 그리고 AWS CUR(비용 및 사용 보고서) 데이터를 활용한 맞춤형 대시보드를 구축하여 실시간으로 비용을 모니터링하고 데이터에 기반한 의사결정을 내릴 수 있는 환경을 마련했습니다. * 재무 팀과의 파트너십을 통해 각 도메인 팀이 할당된 월간 및 분기별 예산을 준수하도록 관리하는 거버넌스 체계를 확립했습니다. ### 지출 감소 및 단가 최적화 전략 (Spend Less & Pay Less) * **지출 감소(Spend Less):** 비운영 환경(Non-production)에서 리소스가 필요할 때만 자동으로 실행되도록 자동화 프로세스를 도입하여, 해당 환경의 비용을 약 25% 절감했습니다. * **단가 최적화(Pay Less):** 사용 패턴 분석을 통해 사용되지 않거나 효율이 낮은 EC2 리소스를 수동으로 제거하고, 워크로드에 맞는 적정 사양으로 조정(Rightsizing)했습니다. * **인프라 현대화:** 기존 인스턴스를 최신 세대로 전환하고, x86 대비 가성비가 뛰어난 ARM 기반의 AWS Graviton 인스턴스 도입을 확대하여 처리 성능은 높이고 비용은 낮추었습니다. ### 기술적 세부 최적화 실행 * **데이터 처리 및 저장:** Amazon S3의 저장 구조를 최적화하고 스토리지 계층화(Tiering)를 적용하여 데이터 보관 비용을 효율화했습니다. * **빅데이터 워크로드:** EMR(Elastic MapReduce) 환경에서 Spot 인스턴스 활용도를 높여 데이터 분석 및 처리 비용을 획기적으로 줄였습니다. * **문화적 확산:** 엔지니어들이 클라우드 비용을 단순한 지출이 아닌 관리해야 할 리소스로 인식하도록 교육하고, 기술적 최적화가 비즈니스 가치로 이어지는 선순환 구조를 만들었습니다. 성공적인 클라우드 비용 최적화를 위해서는 단순히 리소스를 삭제하는 것을 넘어, 엔지니어링 팀과 재무 팀이 공통의 목표를 공유하는 것이 중요합니다. 특히 데이터 분석을 통해 가시성을 확보하고, Graviton 인스턴스나 Spot 인스턴스 같은 클라우드 고유의 가변 비용 모델을 적극적으로 활용할 것을 권장합니다.