llm

59 개의 포스트

개발자는 AI에게 대체될 것인가 (새 탭에서 열림)

현재의 AI 열풍은 막대한 자본이 투입된 버블의 성격을 띠고 있지만, 장기적으로는 개발자의 업무를 근본적으로 재정의하는 도구로 자리 잡을 것입니다. 개발자는 단순히 코드를 생산하는 역할에서 벗어나, 어떤 업무를 AI에게 '추상화(위임)'하고 어떤 핵심 판단력을 유지할지 결정하는 설계자이자 디렉터의 역량을 요구받게 됩니다. 결국 AI 시대의 생존은 기술적 위임의 경계를 설정하고 시스템의 복잡성을 관리하는 '추상화 능력'에 달려 있습니다. ## AI 하이프와 경제적 불균형의 실체 * **아마라의 법칙과 버블:** 기술의 효과는 단기적으로 과대평가되는 경향이 있으며, 현재 AI 시장은 투자 대비 매출 비율이 16:1(설비투자 5,600억 달러 대비 매출 350억 달러)에 달할 정도로 극심한 불균형 상태입니다. * **실질 수익의 부재:** 생성형 AI 도입 프로젝트의 약 95%가 실패하거나 뚜렷한 효율 개선을 보이지 못하고 있으며, 빅테크의 매출조차 상당 부분 내부 거래에 의존하고 있는 실정입니다. * **인력 감축의 역설:** 현재의 개발자 감원은 AI가 업무를 대체했기 때문이라기보다, 막대한 AI 투자 비용을 충당하기 위한 기업의 비용 절감 전략에서 기인한 측면이 큽니다. ## 제번스 패러독스와 직무의 재정의 * **수요의 폭발:** 에어컨 보급률이 높아질수록 관련 산업이 커지듯, AI로 코딩의 문턱이 낮아지면 소프트웨어에 대한 전체 수요와 활용처는 오히려 기하급수적으로 늘어날 것입니다. * **도구로서의 AI:** 과거 게임 엔진이 소규모 팀에게 프로급 역량을 부여했듯, AI는 개발자를 보조하는 강력한 '파워 툴'이 되어 상위 실력자의 생산성을 극대화합니다. * **역할의 변화:** 개발자의 정체성은 코드 작성자에서 '코드 크리에이티브 디렉터'로 변모하며, 시스템 설계, 에이전트 지휘, 결과물 검증이 업무의 중심이 됩니다. ## 위임의 사분면과 추상화의 본질 * **위임의 기준:** '위임하기 쉬운가(기술적 난이도)'는 모델의 발전에 따라 계속 변하는 일시적인 경계일 뿐이며, 중요한 것은 '위임해야 하는가(책임과 판단)'라는 가치 판단의 축입니다. * **추상화로서의 위임:** AI에게 업무를 맡기는 것은 프로그래밍의 '추상화'와 같습니다. 이는 세부 사항을 숨기고 더 이상 신경 쓰지 않겠다는 선언이며, 복잡성을 미래로 이동시키는 레버리지 역할을 합니다. * **유형별 위임 전략:** 단순 CRUD나 보일러플레이트 코드, 테스트 케이스 등 잘 정의된 문제는 AI에게 맡기되, 아키텍처 결정이나 보안 정책, 법규 대응처럼 인간의 판단이 필수적인 영역은 분리해야 합니다. ## 잘못된 추상화와 미래의 리스크 * **추상화의 붕괴:** 트래픽 급증, 법률 개정(GDPR 등), 제로데이 보안 취약점 같은 예외 상황이 발생하면 AI에게 위임했던 '추상화된 업무'가 한꺼번에 무너질 수 있습니다. * **시니어의 역할:** 시스템의 근본이 흔들릴 때 이를 해결할 수 있는 능력은 결국 풍부한 경험을 가진 시니어 개발자의 몫이며, AI 결과물을 맹목적으로 수용할 경우 추상화가 없는 것보다 더 큰 재앙을 초래할 수 있습니다. * **지속 가능한 리팩토링:** 개발자는 AI에게 어떤 컨텍스트를 제공하고 어떤 부분을 직접 통제할지 업무 프로세스를 끊임없이 리팩토링하며 '좋은 추상화'를 구축해야 합니다. 성공적인 AI 활용을 위해서는 AI를 단순한 대체재가 아닌, 복잡성을 관리하는 추상화 도구로 바라봐야 합니다. 기술 발전 속도에 일희일비하기보다, 기술이 해결할 수 없는 '비즈니스 임팩트'와 '시스템의 안정성'에 대한 인간의 판단력을 고도화하는 것이 AI 시대 개발자의 핵심 경쟁력이 될 것입니다.

Kanana-2 개발기 (2): 개선된 post-training recipe를 중심으로 - tech.kakao.com (새 탭에서 열림)

카카오는 차세대 언어모델 Kanana-2를 공개하며, 단순한 대화형 AI를 넘어 에이전트 환경에 최적화된 성능을 구현하기 위한 고도화된 Post-training 레시피를 적용했습니다. 이번 모델은 Pre-training과 Post-training 사이의 'Mid-training' 단계를 도입하여 추론 능력을 극대화하는 동시에, 한국어 성능 저하 문제를 해결하기 위해 기존 학습 데이터를 재학습시키는 전략을 사용했습니다. 결과적으로 Kanana-2는 도구 호출(Tool Calling)과 복잡한 지시 이행 능력에서 비약적인 발전을 이루었으며, 특히 Thinking 모델은 고난도 수학 및 코딩 영역에서 글로벌 수준의 성능을 입증했습니다. ### 성능의 가교 역할을 하는 Mid-training * **도입 배경**: 일반적인 사전 학습(Pre-training)만으로는 복잡한 추론이나 도구 사용 능력을 갖추기 어렵기 때문에, 본격적인 미세 조정 전 단계로서 모델의 잠재력을 끌어올리는 중간 단계를 설계했습니다. * **데이터 구성**: 최신 고성능 모델에서 추출한 200B 규모의 고품질 영어 추론 데이터와 수학, 코드 데이터를 집중적으로 학습시켰습니다. * **치명적 망각(Catastrophic Forgetting) 방지**: 영어 추론 데이터 학습 시 한국어 성능이 하락하는 문제를 방지하고자, 사전 학습 데이터 중 한국어 데이터를 포함한 50B 토큰을 일정 비율로 섞어 학습(Replay 전략)함으로써 언어 균형을 유지했습니다. * **효과**: Mid-training을 거친 모델은 기본 모델 대비 수학(MATH) 및 코딩(HumanEval) 벤치마크에서 유의미한 향상을 보였으며, 이후 Instruct 학습 시 더 빠른 수렴 속도와 높은 최종 성능을 나타냈습니다. ### 에이전트 능력을 강화한 Instruct 모델 * **SFT 전략의 최적화**: 기존 Kanana-1.5 데이터셋에 Nemotron 등 오픈소스 고품질 데이터를 단순히 교체하기보다 추가로 통합(Supplementation)했을 때, 전반적인 성능과 지시 이행 능력의 균형이 가장 잘 유지됨을 확인했습니다. * **Agentic AI 역량**: 실질적인 도구 활용을 위해 단일·다중·병렬 도구 호출 능력을 강화했으며, 답변의 길이, 언어 설정, 특정 단어 제외 등 복잡한 제약 조건을 준수하는 지시 이행 능력을 고도화했습니다. * **Parallel RL 파이프라인**: 대화 스타일과 선호도를 학습하는 DPO(Direct Preference Optimization)와 객관적인 정답이 존재하는 추론/코딩 성능을 높이는 PPO(Proximal Policy Optimization)를 병렬로 적용하여 효율적인 학습 구조를 구축했습니다. * **신뢰성 개선**: RL 단계 이후 KTO(Kahneman-Tversky Optimization) 기반의 Calibration Tuning을 추가하여 모델 답변의 신뢰도를 높이고 환각 현상을 줄였습니다. ### 추론에 특화된 Thinking 모델 * **CoT 기반 학습**: 모델이 문제 해결 과정을 단계별로 사고하는 '사고의 사슬(Chain-of-Thought)'을 학습하도록 SFT 데이터를 구성했습니다. * **Rule-based RL**: 수학과 코딩처럼 정답이 명확한 도메인에 대해 규칙 기반 보상(Reward) 모델을 적용하여, 모델 스스로 더 나은 추론 경로를 탐색하고 검증하도록 유도했습니다. * **성능 도약**: Thinking 모델은 AIME25 벤치마크에서 기본 모델(9.21) 대비 약 5배 향상된 50.0점을 기록했으며, 실시간 코딩 테스트인 LiveCodeBench에서도 글로벌 수준의 경쟁력을 확보했습니다. 이번 Kanana-2 개발 과정은 대규모 추론 데이터 주입 시 발생하는 언어적 편향을 '사전 데이터 리플레이'로 해결하고, DPO와 PPO를 병렬로 활용하여 효율성을 극대화한 사례로 평가됩니다. 복잡한 추론과 도구 활용이 필요한 에이전트 서비스를 기획 중이라면, 단순 Instruct 모델보다 Mid-training을 통해 기초 체력을 다진 후 Thinking SFT가 적용된 모델을 활용하는 것이 더욱 안정적인 성능을 기대할 수 있는 방법입니다.

엔터프라이즈 LLM 서비스 구축기 1: 컨텍스트 엔지니어링 (새 탭에서 열림)

대규모 엔터프라이즈 환경에서 LLM 서비스를 구축할 때는 정교한 지시어(프롬프트 엔지니어링)보다 AI에게 필요한 정보만 선별해 제공하는 '컨텍스트 엔지니어링'이 더욱 중요합니다. LY Corporation은 260개가 넘는 API와 방대한 문서를 다루는 클라우드 AI 어시스턴트를 개발하며, 컨텍스트의 양이 늘어날수록 모델의 추론 성능이 하락하고 환각 현상이 발생하는 문제를 확인했습니다. 이를 해결하기 위해 사용자의 의도에 맞춰 필요한 도구와 가이드라인만 실시간으로 주입하는 '점진적 공개' 전략과 시스템 프롬프트의 충돌을 방지하는 '모의 도구 메시지' 기법을 도입하여 성능과 정확도를 동시에 확보했습니다. ### 컨텍스트 과부하와 성능의 상관관계 * **정보량과 성능의 반비례**: 최신 LLM은 수십만 토큰의 컨텍스트 윈도우를 지원하지만, 입력 길이가 길어질수록 핵심 정보를 찾는 능력이 최대 85%까지 급격히 하락합니다. * **노이즈로 인한 판단력 저하**: 질문과 유사해 보이지만 실제로는 관계없는 정보(노이즈)가 섞이면 모델이 당당하게 가짜 정보를 생성하는 환각 현상이 빈번해집니다. * **토큰 소모 효율성**: LLM은 이전 대화를 기억하지 못하는 스테이트리스(stateless) 구조이므로, 대화가 길어지고 API의 JSON 응답이 누적되면 64K 토큰 정도의 용량은 순식간에 소모되어 비용과 성능에 악영향을 줍니다. ### 도구 선별을 통한 컨텍스트 절약 * **선별적 로드**: 260개의 모든 API 도구를 한 번에 컨텍스트에 올리지 않고, 사용자의 질문에서 제품군(예: Redis, Kubernetes)을 먼저 식별합니다. * **도구 최적화**: 사용자가 특정 제품에 대해 물을 때만 관련된 소수의 도구(API)만 선별하여 제공함으로써 모델의 인지 부하를 획기적으로 줄입니다. ### 응답 가이드라인과 점진적 공개 전략 * **상황별 지침 주입**: "리소스 변경 시 UI 안내 우선"과 같이 특정 조건에서만 필요한 운영 지침을 '응답 가이드라인'으로 정의하고, 질문의 성격에 따라 필요한 시점에만 선택적으로 로드합니다. * **시스템 프롬프트와 가이드라인의 분리**: 모든 상황에 적용되는 '대원칙'은 시스템 프롬프트에, 특정 상황의 '행동 절차'는 가이드라인에 배치하여 관리 효율을 높입니다. ### 모의 도구 메시지(ToolMessage)를 활용한 환각 방지 * **프롬프트 충돌 문제**: 새로운 가이드라인을 단순히 시스템 프롬프트 뒤에 추가할 경우, 모델이 기존의 대원칙(예: "반드시 검색 결과로만 답변하라")을 무시하고 가이드라인에만 매몰되어 환각을 일으키는 현상이 발생했습니다. * **도구 메시지 전략**: 가이드라인을 시스템 프롬프트에 넣는 대신, 마치 검색 도구를 실행해서 얻은 결과값인 것처럼 '도구 메시지(ToolMessage)' 형식으로 주입합니다. * **전략의 효과**: 이 방식을 통해 LLM은 시스템 프롬프트의 대원칙을 준수하면서도, 주입된 가이드라인을 도구로부터 얻은 최신 정보로 인식하여 훨씬 정확하고 일관된 답변을 생성하게 됩니다. 엔터프라이즈 LLM 서비스의 핵심은 모델의 지능을 믿고 모든 데이터를 던져주는 것이 아니라, 모델이 가장 똑똑하게 판단할 수 있도록 최적의 정보만 정교하게 큐레이션하여 전달하는 설계 능력에 있습니다. 특히 복잡한 비즈니스 로직이나 사내 고유 지식을 반영해야 할 때는 시스템 프롬프트를 비대하게 만드는 대신, 도구 메시지나 동적 컨텍스트 주입 기술을 활용해 모델의 판단 체계를 보호하는 것이 실질적인 해결책이 됩니다.

LLM을 이용한 서비스 취약점 분석 자동화 #1 (새 탭에서 열림)

토스 보안 연구팀은 구글의 'Project Naptime'에서 영감을 얻어 LLM 기반의 취약점 분석 자동화 시스템을 구축했습니다. 대용량 코드 처리, 결과의 불확실성, 운영 비용 등 실무 적용 과정에서 마주한 네 가지 핵심 기술적 난제를 단계별로 해결하며 최종적으로 95% 이상의 분석 정확도를 달성했습니다. 기술적 가능성을 넘어 실제 수백 개의 서비스에 지속적으로 적용 가능한 수준의 보안 자동화 환경을 마련했다는 점에 의의가 있습니다. **대용량 소스코드 분석을 위한 MCP 도입** * 단순히 소스코드 전체를 LLM에 입력하는 방식은 토큰 한계와 환각(Hallucination) 문제로 인해 대규모 프로젝트 분석에는 부적합했습니다. * 대안으로 RAG(검색 증강 생성)를 시도했으나 코드 간의 복잡한 연관 관계를 파악하는 데 한계가 있었습니다. * 최종적으로 MCP(Model Context Protocol)를 구축하여 LLM 에이전트가 필요할 때마다 함수 정의나 변수 사용처를 도구 호출(Tool Calling) 방식으로 자유롭게 탐색하도록 설계했습니다. **SAST 결합을 통한 분석 일관성 확보** * 동일한 코드에 대해서도 분석 결과가 매번 달라지는 LLM의 비결정성 문제를 해결하기 위해 정적 분석 도구(SAST)를 결합했습니다. * 빌드 과정이 복잡하고 무거운 CodeQL 대신, 가볍고 빠른 오픈소스 도구인 Semgrep을 활용하여 모든 입력 경로(Source)에서 위험 지점(Sink)까지의 경로를 먼저 수집했습니다. * SAST가 추출한 잠재적 취약 경로를 LLM이 집중 분석하게 함으로써 탐지 누락을 방지하고 분석의 신뢰도를 높였습니다. **멀티 에이전트 체계를 통한 비용 최적화** * 모든 코드 경로를 심층 분석할 경우 발생하는 막대한 토큰 비용을 줄이기 위해 역할을 분담한 세 가지 에이전트를 도입했습니다. * **Discovery 에이전트:** 수집된 경로 중 실제 취약점 가능성이 높은 경로를 1차로 선별하는 거름망 역할을 수행합니다. * **Analysis 에이전트:** 선별된 경로를 심층 분석하여 실제 취약 여부를 판별합니다. * **Review 에이전트:** 최종 결과를 검토하여 오탐(False Positive)을 제거함으로써 분석의 정교함을 더했습니다. **지속 가능한 운영을 위한 오픈 모델 전환** * 상용 클라우드 모델(Claude 등)의 높은 비용 문제를 해결하기 위해 직접 호스팅 가능한 오픈 모델(Open Model)로 전환했습니다. * Qwen3:30B, gpt-oss:20B, llama3.1:8B 등 다양한 모델의 ROI를 비교 분석한 결과, 취약점 분석 정확도와 도구 호출 성능이 가장 우수한 'Qwen3:30B'를 최종 선택했습니다. * 오픈 모델의 성능을 보완하기 위해 프롬프트 엔지니어링과 퓨샷 러닝(Few-shot Learning)을 적용하여 클라우드 모델 못지않은 성능을 구현했습니다. 단순히 최신 기술을 도입하는 것에 그치지 않고, 기업 환경에서 실제 운영 가능한 수준의 '비용 대비 성능'을 확보하는 것이 중요합니다. LLM 취약점 분석 시스템을 구축할 때는 모든 판단을 모델에 맡기기보다 Semgrep과 같은 전통적인 보안 도구로 분석 범위를 좁혀주고, 멀티 에이전트 구조로 단계별 필터링을 거치는 설계가 실무적으로 가장 효과적입니다.

당근페이 AI Powered FDS로 가는 여정: 룰엔진구축부터 LLM 적용까지 | by HyunwooKim | 당근 테크 블로그 | Nov, 2025 | Medium (새 탭에서 열림)

당근페이는 급변하는 이상거래 패턴에 유연하게 대응하기 위해 룰엔진 중심의 FDS를 구축하고, 최근에는 LLM을 결합하여 탐지 정교화와 모니터링 효율성을 극대화하고 있습니다. 초기 룰엔진은 조건, 규칙, 정책의 계층 구조로 설계되어 실시간 탐지와 제재를 가능하게 했으며, 여기에 LLM 기반의 맥락 분석을 더해 검토 시간을 단축하고 판단의 일관성을 확보했습니다. 금융 보안 규제를 준수하면서도 최신 AI 모델을 실무에 적용해 사용자 자산을 보호하는 선도적인 FDS 운영 사례를 제시합니다. **유연한 탐지를 위한 룰엔진의 구조** * 룰엔진은 조건(빌딩 블록), 규칙(조건의 조합), 정책(규칙의 묶음)의 3단계 계층 구조로 설계되어 레고 블록처럼 탐지 로직을 조립할 수 있습니다. * '가입 후 N일 이내', '송금 횟수 N건 이상'과 같은 개별 임계값을 자유롭게 변경하며 새로운 사기 패턴에 즉각적으로 대응할 수 있는 환경을 마련했습니다. * 이벤트 유입 경로는 즉시 차단이 필요한 '동기 API'와 대량의 이벤트를 실시간으로 분석하는 '비동기 스트림'으로 분리하여 처리 효율을 높였습니다. **룰엔진 기반의 위험 평가 및 사후 처리** * 유입된 모든 거래 이벤트는 설정된 정책과 규칙에 따라 위험 평가를 거치며, 그 결과에 따라 LLM 평가, 고객 서비스팀 알람, 유저 제재 등의 후속 조치가 자동 수행됩니다. * 시스템 도입 후 실시간으로 규칙을 추가하거나 변경하며 사기 트렌드를 빠르게 반영한 결과, 금융 및 수사기관으로부터의 사기 관련 정보 요청 건수가 유의미하게 감소했습니다. * 탐지 로직의 유연화는 단순 차단을 넘어 시스템 전반의 유저 상태 동기화까지 통합적으로 관리할 수 있는 기반이 되었습니다. **LLM 도입을 통한 지능형 FDS로의 진화** * 기존의 수동 검토 방식은 건당 5~20분이 소요되고 담당자마다 판단 결과가 달라질 수 있는 한계가 있어, 이를 해결하기 위해 LLM을 통한 맥락 분석 기능을 도입했습니다. * 전자금융업의 망분리 규제 문제를 해결하기 위해 '혁신금융서비스' 지정을 받았으며, AWS Bedrock의 Claude 3.5 Sonnet 모델을 활용해 보안과 성능을 모두 잡았습니다. * BigQuery의 사기 이력을 Redis에 캐싱하고, 이를 구조화된 프롬프트(XML 태그 및 JSON 형식)에 결합하여 LLM이 사기 여부와 그 근거를 일관되게 평가하도록 설계했습니다. 효율적인 FDS 운영을 위해서는 룰 기반의 명확한 통제와 AI 기반의 유연한 맥락 분석이 조화를 이루어야 합니다. 특히 LLM을 실무에 적용할 때는 규제 준수를 위한 기술적/행정적 준비와 함께, AI가 정교한 판단을 내릴 수 있도록 단계별로 명시적이고 구조화된 프롬프트를 설계하는 과정이 무엇보다 중요합니다.

당근의 GenAI 플랫폼. 안녕하세요, 당근 Tech Core의 ML Applications팀과… | by Tommy Park | 당근 테크 블로그 | Dec, 2025 | Medium (새 탭에서 열림)

당근은 급증하는 생성형 AI(GenAI) 활용 수요에 대응하기 위해 파편화된 리소스를 통합하고 개발 효율성을 극대화하는 자체 플랫폼을 구축했습니다. LLM Router와 Prompt Studio를 통해 API 관리의 병목을 제거하고, 비개발자도 코드 없이 AI 기능을 고도화할 수 있는 환경을 마련했습니다. 이를 통해 모델 제공사의 장애나 사용량 제한에 유연하게 대처하며 서비스 안정성을 확보하고 조직 전반의 AI 활용 역량을 결집하고 있습니다. **LLM Router를 통한 AI Gateway 통합** * 여러 모델 제공사(OpenAI, Anthropic, Google 등)의 계정과 API 키를 중앙에서 관리하여 보안 우려를 해소하고 운영 프로세스를 간소화했습니다. * 팀별로 분산되어 발생하던 사용량 제한(Rate Limit) 문제를 공유 자원 풀링을 통해 해결하고, 전체 서비스의 비용과 사용량을 한눈에 파악할 수 있는 통합 대시보드를 구축했습니다. * OpenAI 인터페이스를 표준 규격으로 채택하여, 클라이언트가 모델 제공사에 관계없이 동일한 SDK 코드로 다양한 모델을 교체하며 사용할 수 있도록 설계했습니다. **Prompt Studio: 비개발자 중심의 AI 실험 환경** * 엔지니어의 도움 없이 웹 UI에서 프롬프트를 작성하고 테스트할 수 있는 환경을 제공하여 PM 등 비개발 직군의 업무 자율성을 높였습니다. * 수천 개의 테스트셋을 업로드해 결과를 한꺼번에 생성하고 정량적으로 측정하는 평가(Evaluation) 기능을 통해 프롬프트의 품질을 체계적으로 검증합니다. * 버전 관리 기능을 통해 클릭 한 번으로 최신 프롬프트를 실제 서비스에 배포할 수 있으며, 이는 엔지니어의 코드 수정 없이도 빠른 이터레이션을 가능하게 합니다. **장애 대응 및 서비스 안정성 강화** * 모델 제공사 측의 일시적인 오류 발생 시 자동으로 재시도(Retry)를 수행하여 서비스 중단을 최소화합니다. * 특정 리전의 사용량 제한이나 장애 발생 시 자동으로 다른 리전으로 요청을 우회하는 리전 폴백(Region Fallback) 기능을 플랫폼 수준에서 지원합니다. * 개별 서비스 팀이 인프라 장애 대응에 신경 쓰지 않고 비즈니스 로직 개발에만 집중할 수 있는 환경을 조성했습니다. 기업 내 GenAI 도입이 늘어남에 따라 API 키와 프롬프트 관리는 단순한 운영을 넘어 서비스의 안정성과 확장성을 결정짓는 핵심 인프라가 됩니다. 당근의 사례처럼 통합 게이트웨이와 사용자 친화적인 실험 플랫폼을 선제적으로 구축한다면, 개발 부하를 줄이면서도 조직 전체의 AI 활용 노하우를 효율적으로 축적할 수 있습니다.

구글 리서치 20 (새 탭에서 열림)

2025년 구글 리서치는 기초 연구가 실제 제품과 사회적 가치로 연결되는 '혁신의 마법 주기(Magic Cycle)'를 가속화하며 생성형 AI, 과학적 발견, 양자 컴퓨팅 분야에서 기념비적인 성과를 거두었습니다. 제미나이 3(Gemini 3)로 대표되는 모델의 효율성과 사실성 개선은 물론, 스스로 도구를 사용하는 에이전트 모델과 질병 치료를 위한 바이오 AI 기술을 통해 기술적 한계를 한 단계 더 확장했습니다. 이러한 연구 결과는 단순한 기술 진보를 넘어 기후 변화 대응과 교육 등 인류 공통의 과제를 해결하는 데 실질적인 기여를 하고 있습니다. **생성형 모델의 효율성 및 신뢰성 고도화** * **추론 효율성 최적화:** '투기적 디코딩(Speculative decoding)'과 가상 머신 작업 수명을 예측하는 'LAVA' 알고리즘을 도입하여 대규모 클라우드 데이터 센터의 리소스 효율성과 비용 절감을 실현했습니다. * **사실성(Factuality) 강화:** 2021년부터 이어진 LLM 사실성 연구를 집대성하여 제미나이 3를 역대 가장 사실적인 모델로 구축했으며, FACTS 벤치마크 등을 통해 모델의 정보 근거 제시 능력을 입증했습니다. * **다국어 및 다문화 대응:** 오픈 모델인 '젬마(Gemma)'를 140개 이상의 언어로 확장하고, 문화적 맥락을 이해하는 'TUNA' 분류 체계와 'Amplify' 이니셔티브를 통해 글로벌 사용자에게 최적화된 AI 경험을 제공합니다. **생성형 UI와 지능형 에이전트의 등장** * **인터랙티브 인터페이스:** 사용자의 프롬프트에 따라 웹페이지, 게임, 도구 등의 시각적 인터페이스를 실시간으로 생성하는 '생성형 UI'를 제미나이 3에 도입했습니다. * **에이전트 기능(Agentic AI):** 단순 응답을 넘어 복잡한 작업을 수행하는 '프로젝트 자비스(Project Jarvis)'와 웹 브라우징 에이전트를 통해 사용자의 일상 업무를 자동화하는 능력을 선보였습니다. * **코드 및 추론 능력:** 고도화된 추론 아키텍처를 통해 소프트웨어 엔지니어링 성능을 비약적으로 향상시켰으며, 이는 구글 내부 코드의 25% 이상이 AI에 의해 생성되는 결과로 이어졌습니다. **과학적 혁신과 헬스케어의 진보** * **생물학적 발견:** 단백질 구조 예측을 넘어 분자 상호작용을 모델링하는 'AlphaFold 3'와 새로운 단백질을 설계하는 'AlphaProteo'를 통해 신약 개발과 질병 이해의 속도를 높였습니다. * **의료 특화 모델:** 'Med-Gemini'와 같은 의료 전용 모델을 개발하여 흉부 엑스레이 분석, 유전체 데이터 해석 등 전문적인 의료 진단 보조 도구로서의 가능성을 확인했습니다. * **뇌 과학 연구:** 하버드 대학과의 협력을 통해 인간 대뇌 피질의 시냅스 수준 지도를 제작하는 등 신경과학 분야에서도 전례 없는 성과를 냈습니다. **양자 컴퓨팅과 지구 과학을 통한 미래 대비** * **양자 우위와 실용화:** 양자 오류 정정 기술의 혁신을 통해 실제 문제 해결에 활용 가능한 양자 컴퓨팅 시대를 앞당겼습니다. * **기후 및 환경 대응:** 산불을 실시간으로 추적하는 'FireSat' 위성 네트워크와 비행운(Contrails) 감소 연구 등을 통해 기후 위기 대응을 위한 구체적인 AI 솔루션을 제시했습니다. * **책임감 있는 AI:** 콘텐츠의 출처를 밝히는 'SynthID' 워터마킹 기술을 텍스트와 비디오로 확대 적용하여 AI 생성 콘텐츠의 투명성과 안전성을 강화했습니다. 구글의 2025년 성과는 AI가 단순한 보조 도구를 넘어 과학 연구의 속도를 높이고 복잡한 사회 문제를 해결하는 강력한 에이전트로 진화했음을 보여줍니다. 기업과 연구자는 이제 단순한 챗봇 구현을 넘어, 특정 도메인에 특화된 에이전트 모델과 생성형 UI를 활용한 새로운 사용자 경험 설계에 집중해야 할 시점입니다.

안전은 기본, 비용 절감은 덤: AI 서비스에 별도 가드레일이 필요한 이유 (새 탭에서 열림)

AI 가드레일은 모델의 오동작을 막는 필수 안전장치이지만, 단순히 시스템 프롬프트에 규칙을 심는 방식은 모델 본연의 성능 저하와 예기치 못한 부작용을 초래할 수 있습니다. 시스템 프롬프트는 규칙의 위치나 미세한 수정에 따른 출력 변동성에 매우 민감하기 때문에, 모델 외부에서 입출력을 검증하는 별도의 가드레일 체계를 구축하는 것이 보안과 서비스 안정성 측면에서 더욱 효율적입니다. ### 시스템 프롬프트 기반 가드레일의 과도한 거절 문제 * 시스템 프롬프트에 강력한 안전 규칙을 부여하면, 모델이 전체적으로 보수적인 태도를 취하게 되어 무해한 질문까지 거절하는 위양성(False Positive) 확률이 높아집니다. * 연구 결과에 따르면 안전 프롬프트 추가 시 전체 쿼리의 임베딩이 '거절' 방향으로 이동하며, "Python 프로세스를 죽이는(kill) 방법"과 같은 기술적인 질문조차 위험한 요청으로 오인하여 거절하는 패턴이 관찰됩니다. * 이는 보안 강도와 사용자 경험(정상적인 답변 수신) 사이의 트레이드오프를 심화시켜 모델의 유용성을 떨어뜨리는 원인이 됩니다. ### 프롬프트 위치 및 순서에 따른 위치 편향(Position Bias) * LLM은 긴 컨텍스트 안에서 처음과 끝부분의 정보는 잘 인식하지만, 중간에 위치한 정보는 간과하는 'Lost in the Middle' 현상을 보입니다. * 여러 제약 조건이 섞여 있는 경우, 가드레일 규칙이 시스템 프롬프트의 어느 지점에 위치하느냐에 따라 모델이 해당 규칙을 지키는 가중치가 달라집니다. * 실험 결과에 따르면 난이도가 높은 제약을 앞쪽에 배치할 때 성능이 가장 좋으며, 가드레일 규칙이 중간이나 뒤로 밀려날 경우 보안 성능이 일정하게 유지되지 않는 불안정성을 보입니다. ### 미세한 수정이 유발하는 성능의 나비효과 * 시스템 프롬프트 내의 아주 사소한 변화(공백 추가, "감사합니다" 문구 삽입 등)만으로도 모델의 결정 경계가 이동하여 전체 예측 값의 10% 이상이 바뀔 수 있습니다. * 특히 출력 형식을 지정(JSON/XML)하거나 특정 탈옥 방지 문구를 섞는 행위가 모델의 내부 추론 경로를 완전히 바꾸어, 일부 작업에서 성능이 급락하는 '재앙적인 수준의 붕괴'가 발생하기도 합니다. * 안전 규칙, 스타일, 형식 등 수십 줄의 요구사항을 하나의 시스템 프롬프트에 담을 경우, 한 줄의 수정이 모델이 어떤 규칙을 우선시할지에 대한 예측 불가능한 변화를 일으킵니다. ### 별도 가드레일 적용을 통한 보완과 추천 * 모델 본연의 성능을 유지하면서도 안전성을 확보하기 위해서는 모델 앞뒤에 독립적인 보안 게이트(별도 가드레일)를 세우는 방식이 효과적입니다. * 사용자의 입력 단계에서 위험을 감지해 차단(Tripwires)하거나 안전하게 재작성(Rewriter)하여 전달하고, 모델의 응답 후에도 다시 한번 결과를 점검하는 다층 방어 체계를 구축해야 합니다. * 이를 통해 시스템 프롬프트의 복잡도를 낮추고, 보안 정책의 수정이 모델의 전체 성능(추론 로직)에 직접적인 영향을 주지 않도록 분리하는 것이 실무적으로 권장됩니다.

제미나이, STOC (새 탭에서 열림)

Google Research는 이론 컴퓨터 과학 분야의 최고 권위 학회인 STOC 2026 제출 논문을 대상으로, Gemini를 활용한 자동 피드백 도구를 실험적으로 도입했습니다. 이 도구는 복잡한 논리 구조와 수식을 검증하여 인간 연구자가 수개월 동안 발견하지 못한 치명적인 오류를 24시간 이내에 찾아내는 성과를 거두었습니다. 결과적으로 참여 저자의 97%가 피드백이 유용했다고 답하며, AI가 전문적인 연구 워크플로우를 보조하는 강력한 협업 도구가 될 수 있음을 증명했습니다. **추론 확장 기술을 통한 수학적 엄밀성 확보** * Gemini 2.5 Deep Think의 고급 버전에 적용된 '추론 확장(Inference Scaling)' 메서드를 활용하여 단순한 선형적 사고를 넘어 여러 해결 경로를 동시에 탐색합니다. * 다양한 추론 및 평가 흔적(traces)을 결합함으로써 LLM 특유의 환각 현상을 줄이고, 논문의 가장 핵심적인 논리적 결함에 집중할 수 있도록 최적화되었습니다. **구조화된 피드백 제공 방식** * 저자들에게는 논문의 기여도 요약, 주요 정리(Theorem) 및 보조 정리(Lemma)에 대한 구체적인 오류 지적 및 개선 제안, 오타 및 단순 교정 사항이 포함된 체계적인 리포트가 제공됩니다. * 단순한 문구 수정을 넘어 변수 이름의 불일치, 부등식의 잘못된 적용, 증명 과정에서의 논리적 공백 등 기술적인 디테일을 심층 분석합니다. **실제 연구 현장에서의 성과와 사용자 반응** * 실험에 참여한 논문의 80% 이상이 AI 리뷰를 선택했으며, 저자들은 수개월간 발견하지 못했던 '논문 전체를 부정하게 만드는 치명적인 버그'를 AI가 찾아냈다는 점에 주목했습니다. * 설문 결과 참여자의 97%가 재사용 의사를 밝혔으며, 81%는 논문의 명확성과 가독성이 크게 향상되었다고 평가했습니다. * 인간 리뷰어와 달리 중립적인 톤으로 신속하게(2일 이내) 피드백을 제공한다는 점이 큰 장점으로 꼽혔습니다. **전문가와 AI의 협업 모델 및 한계점** * 모델이 복잡한 표기법이나 그림을 해석하는 과정에서 간혹 환각을 일으키기도 하지만, 해당 분야의 전문가인 저자들은 AI의 출력물에서 '노이즈'를 걸러내고 유익한 통찰만을 선택적으로 수용하는 능력을 보여주었습니다. * 이는 AI가 인간을 대체하는 것이 아니라, 전문가의 판단을 돕고 검증의 시작점 역할을 수행하는 '보조적 파트너'로서 최적화되어 있음을 시사합니다. **교육적 가치와 미래 전망** * 설문에 응한 연구자의 75%는 이 도구가 학생들에게 수학적 엄밀성과 논문 작성법을 교육하는 데 큰 가치가 있다고 응답했습니다. * 연구 커뮤니티의 88%는 연구 프로세스 전반에 걸쳐 이러한 도구를 지속적으로 사용하기를 희망하고 있으며, Google은 향후 동료 검토(Peer Review) 과정을 대체하는 것이 아닌, 이를 보완하고 강화하는 방향으로 기술을 발전시킬 계획입니다. 연구자들은 이 도구를 단순한 자동 검토기가 아닌, 연구 초기 단계부터 논리의 빈틈을 메워주는 '상시 접속 가능한 동료 연구자'로 활용할 것을 권장합니다. 특히 복잡한 증명이 포함된 논문을 투고하기 전, 예상치 못한 논리적 오류를 사전에 필터링하는 용도로 매우 유용합니다.

AI 챗봇 사용에 대한 (새 탭에서 열림)

Google Research가 발표한 'Urania' 프레임워크는 차분 프라이버시(Differential Privacy, DP)를 활용하여 사용자 대화의 비밀을 엄격하게 보호하면서도 AI 챗봇 사용 패턴에 대한 고차원적인 인사이트를 도출합니다. 기존의 휴리스틱한 개인정보 제거 방식과 달리, 이 모델은 수학적으로 증명된 프라이버시 보장을 제공하여 특정 개인의 데이터가 분석 결과에 노출되는 것을 원천적으로 차단합니다. 이를 통해 플랫폼 운영자는 프라이버시 침해 우려 없이 서비스 개선 및 안전 정책 준수를 위한 대규모 언어 모델(LLM) 사용 트렌드를 분석할 수 있습니다. **기존 방식의 한계와 수학적 프라이버시의 도입** * 기존의 CLIO와 같은 프레임워크는 LLM이 대화에서 개인식별정보(PII)를 스스로 제거하도록 유도하는 휴리스틱 방식에 의존하여, 모델 진화에 따른 보안 유지나 엄격한 감사가 어려웠습니다. * Urania는 차분 프라이버시의 '사후 처리(Post-processing)'와 '합성(Composition)' 속성을 활용하여, 파이프라인의 각 단계에서 발생하는 프라이버시 손실을 수학적 예산(ε) 내에서 관리합니다. * 이러한 접근법은 프롬프트 주입 공격(Prompt Injection)과 같은 위협으로부터 자유로우며, LLM이 원본 대화 내용을 직접 보지 못하게 설계되어 보안성을 극대화합니다. **3단계 데이터 보호 파이프라인 구성** * **DP 클러스터링**: 대화 내용을 수치적 임베딩으로 변환한 뒤, 특정 대화가 클러스터 중심에 과도한 영향을 미치지 않도록 제한하는 알고리즘을 사용하여 유사한 대화들을 그룹화합니다. * **DP 키워드 추출**: 클러스터 내에서 빈번하게 등장하는 키워드를 집계할 때 노이즈를 추가하는 히스토그램 메커니즘을 적용하여, 여러 사용자에게 공통된 키워드만 추출하고 고유한 민감 정보는 걸러냅니다. * LLM 가이드 선택: LLM이 대화별로 상위 5개 키워드를 생성하게 함. * DP TF-IDF: 단어 빈도와 문서 역빈도를 계산하여 가중치를 부여하는 전통적 방식의 DP 버전. * 사전 정의 목록 활용: 공개 데이터를 통해 구축된 키워드 후보군 중에서 LLM이 적합한 항목을 선택하게 함. * **LLM 기반 요약**: 요약 단계의 LLM은 원본 대화가 아닌 익명화된 '키워드 리스트'만을 입력받아 최종 인사이트를 생성하며, 이는 프라이버시 보존 결과물에 대한 안전한 사후 처리에 해당합니다. **프라이버시와 분석 유용성의 균형** * 성능 평가 결과, 프라이버시 보호 강도(낮은 ε 값)가 높을수록 요약의 구체성은 다소 하락하는 트레이드오프 관계가 관찰되었습니다. * 그럼에도 불구하고 Urania는 단순한 비공개 방식(Simple-CLIO)과 비교했을 때, 수학적 안전성을 담보하면서도 실무에 적용 가능한 수준의 고차원적 사용 패턴 요약을 제공함을 입증했습니다. * 이 프레임워크는 데이터 분석의 품질을 유지하면서도 사용자의 신뢰를 보장해야 하는 기술 기업들에게 표준화된 개인정보 보호 분석 가이드라인을 제시합니다. 조직에서 대규모 챗봇 데이터를 분석해야 한다면, 단순히 LLM의 필터링 능력에 의존하기보다 Urania와 같이 수학적으로 증명된 차분 프라이버시 파이프라인을 구축하는 것이 장기적인 보안 및 규제 대응 측면에서 권장됩니다.

LLM이지만 PDF는 읽고 싶어: 복잡한 PDF를 LLM이 이해하는 방법 (새 탭에서 열림)

네이버는 복잡한 구조의 PDF 문서를 LLM이 정확하게 이해할 수 있도록 돕는 전용 파서인 'PaLADIN'을 개발했습니다. PaLADIN은 표, 차트, 텍스트가 혼재된 문서의 레이아웃을 정밀하게 분석하여 LLM이 처리하기 최적화된 데이터 형식으로 변환하는 데 중점을 둡니다. 이를 통해 증권사 리포트 요약과 같은 전문적인 영역에서 데이터 추출의 정확도를 높이고 AI 서비스의 신뢰성을 확보했습니다. **PaLADIN의 아키텍처와 핵심 기술 스택** * **레이아웃 분석 (Doclayout-Yolo):** 문서 내의 텍스트 영역, 표, 차트 등 각 요소의 위치를 파악하는 'Element-Detector' 역할을 수행하여 문서의 구조를 정의합니다. * **표 및 차트 추출 모델:** 표 구조 분석을 위해 `nemoretriever-table-structure-v1`을 사용하며, 시각적 정보가 중요한 차트 해석에는 `google/gemma3-27b-it` 모델을 활용해 데이터를 추출합니다. * **고성능 OCR 결합:** 네이버의 파파고 OCR 기술을 통합하여 문서 내 텍스트 정보를 정확하게 디지털화하며, 수치와 문자가 섞인 복잡한 본문도 정밀하게 복원합니다. * **파이프라인 최적화:** NVIDIA의 `nv-ingest` 아키텍처를 기반으로 설계를 고도화하여 대량의 PDF 문서를 신속하게 처리할 수 있는 추론 속도를 확보했습니다. **성능 평가 및 서비스 적용 사례** * **정밀한 성능 검증:** 단순 텍스트 추출을 넘어 표 구조 복원 능력과 파싱 속도를 다각도로 측정했으며, 기존 파서 대비 우수한 정확도를 입증했습니다. * **증권사 리포트 요약 서비스:** 수치와 그래프가 많은 증권 리포트를 분석하는 'AIB 증권사 리포트' 서비스에 적용되어, LLM이 잘못된 정보를 생성하는 할루시네이션(환각) 현상을 최소화했습니다. * **LLM as a Judge:** 요약 결과의 품질을 평가하기 위해 LLM을 평가자로 활용하는 방식을 도입, 서비스 적용 시의 실효성을 객관적으로 검토했습니다. **향후 개선 방향** * **정밀도 고도화:** 표 내부의 미세한 셀 좌표 인식 오류를 개선하고, 다양한 형태의 차트에서 데이터를 더 정확하게 뽑아낼 수 있도록 모델을 개선할 예정입니다. * **한국어 최적화:** 국내 사용자 환경에 맞춰 한국어 특화 모델의 성능을 지속적으로 강화하여 문서 이해의 완성도를 높여갈 계획입니다. PDF 내의 비정형 데이터를 정형화된 구조로 변환하는 것은 RAG(검색 증강 생성) 시스템의 성능을 결정짓는 핵심 요소입니다. 복잡한 표나 차트가 포함된 전문 문서를 다루는 서비스를 구축한다면, 단순한 텍스트 추출기를 넘어 레이아웃 분석 모델이 통합된 PaLADIN과 같은 전문 파이프라인 도입을 고려해볼 수 있습니다.

Option 2 (Natural Tech (새 탭에서 열림)

Amazon SageMaker AI는 Amazon Nova, DeepSeek, Llama 등 주요 AI 모델에 대해 인프라 관리 없이 미세 조정(Fine-tuning)을 수행할 수 있는 새로운 서버리스 커스터마이징 기능을 발표했습니다. 이 기능은 복잡한 리소스 프로비저닝을 자동화하여 모델 최적화 기간을 수개월에서 수일 수준으로 단축하며, 사용자가 인프라 대신 모델 튜닝 자체에 집중할 수 있는 환경을 제공합니다. 개발자는 SageMaker Studio의 직관적인 인터페이스를 통해 최신 강화 학습 기법을 몇 번의 클릭만으로 적용하고 모델을 즉시 배포할 수 있습니다. ### 서버리스 기반의 인프라 자동화 및 효율성 * **자동 리소스 프로비저닝**: 모델의 크기와 학습 데이터의 양에 맞춰 SageMaker AI가 최적의 컴퓨팅 리소스를 자동으로 선택하고 할당합니다. * **관리 부담 제거**: 서버리스 환경에서 구동되므로 사용자가 직접 인스턴스를 관리하거나 확장성을 고민할 필요가 없습니다. * **실험 추적 통합**: 새롭게 도입된 서버리스 MLflow 애플리케이션을 통해 하이퍼파라미터 및 실험 과정을 체계적으로 기록하고 관리할 수 있습니다. ### 고도화된 모델 커스터마이징 기법 지원 * **다양한 학습 기법**: 지도 학습 기반 미세 조정(SFT)뿐만 아니라 직접 선호도 최적화(DPO), 검증 가능한 보상을 통한 강화 학습(RLVR), AI 피드백 기반 강화 학습(RLAIF) 등 최신 기법을 지원합니다. * **사용자 친화적 UI**: SageMaker Studio 내 'Customize with UI' 기능을 통해 코딩 부담을 줄이면서도 배치 크기, 학습률, 에포크(Epoch) 등 상세 설정을 조정할 수 있습니다. * **연속적인 최적화**: 학습 완료 후 'Continue customization' 기능을 사용하여 하이퍼파라미터를 조정하거나 다른 기법으로 추가 학습을 진행하는 반복 작업이 용이합니다. ### 평가 및 유연한 배포 옵션 * **성능 비교 평가**: 커스터마이징된 모델이 기본 모델 대비 얼마나 개선되었는지 확인할 수 있는 평가(Evaluate) 기능을 제공합니다. * **멀티 플랫폼 배포**: 학습과 평가가 완료된 모델은 Amazon SageMaker 또는 Amazon Bedrock 중 원하는 환경을 선택하여 원클릭으로 배포할 수 있습니다. * **보안 및 암호화**: 네트워크 보안 설정 및 저장 볼륨 암호화 등 기업용 애플리케이션에 필요한 고급 보안 설정을 동일하게 지원합니다. 이 서비스는 인프라 구축의 복잡성 때문에 최신 LLM 성능 최적화를 망설였던 기업에게 매우 실용적인 대안입니다. 특히 RLVR이나 RLAIF 같은 고난도 강화 학습 기법을 복잡한 설정 없이 테스트해보고 싶은 팀에게 SageMaker AI의 서버리스 워크플로우를 우선적으로 활용해 볼 것을 추천합니다.

Amazon Bedrock, 새로운 Mistral (새 탭에서 열림)

Amazon Bedrock이 Mistral Large 3와 Ministral 3를 포함한 18개의 새로운 오픈 웨이트(Open weight) 모델을 추가하며, 총 100여 개의 서버리스 모델 라인업을 구축하게 되었습니다. 개발자들은 인프라를 변경하거나 코드를 재작성할 필요 없이 단일 API를 통해 구글, 엔비디아, 오픈AI 등 선도적인 AI 기업들의 최신 모델을 자유롭게 선택하고 평가할 수 있습니다. 이번 확장을 통해 기업들은 비용 효율성과 성능 사이의 최적점을 찾아 비즈니스 특성에 맞는 생성형 AI 애플리케이션을 더욱 신속하게 구축할 수 있는 환경을 갖추게 되었습니다. **Mistral AI의 최신 모델 라인업** * **Mistral Large 3**: 긴 문맥(Long-context) 이해와 멀티모달 추론, 코딩 능력에 최적화된 모델로, 복잡한 엔터프라이즈 지식 작업과 에이전트 워크플로우에 강력한 성능을 발휘합니다. * **Ministral 3 3B**: 에지(Edge) 환경에 최적화된 소형 모델로, 단일 GPU에서 효율적으로 구동되며 실시간 번역, 데이터 추출, 이미지 캡셔닝 등 저지연 애플리케이션에 적합합니다. * **Ministral 3 8B/14B**: 텍스트와 시각 정보 처리에 있어 동급 최강의 성능을 제공하며, 하드웨어 제약이 있는 온디바이스 환경이나 프라이빗 AI 배포 시 고급 에이전트 기능을 구현하는 데 사용됩니다. **다양한 산업군을 위한 오픈 웨이트 모델 확장** * **Google Gemma 3 4B**: 노트북이나 모바일 기기에서 로컬로 실행할 수 있는 효율적인 다국어 모델로, 개인화된 온디바이스 AI 경험을 제공하는 데 유리합니다. * **광범위한 파트너십**: 구글, MiniMax AI, Moonshot AI, NVIDIA, OpenAI, Qwen 등의 최신 모델이 포함되어, 특정 언어나 산업 도메인에 특화된 선택지가 대폭 늘어났습니다. * **서버리스 및 통합 관리**: 모든 모델은 AWS가 완전히 관리하는 서버리스 방식으로 제공되므로, 사용자들은 별도의 GPU 서버 관리 부담 없이 API 호출만으로 최첨단 모델을 즉시 활용할 수 있습니다. **Bedrock 플랫폼의 유연성과 편의성** * **통합 API 아키텍처**: 서로 다른 제조사의 모델이라도 동일한 API 구조를 사용하므로, 성능 평가 결과에 따라 애플리케이션의 모델을 손쉽게 교체하거나 업그레이드할 수 있습니다. * **지속적인 큐레이션**: AWS는 고객의 요구사항과 기술적 발전을 모니터링하여 유망한 신규 모델과 검증된 업계 표준 모델을 지속적으로 업데이트하고 있습니다. 개발자는 Amazon Bedrock의 통합 인터페이스를 활용해 각 모델의 벤치마크와 비용 효율성을 비교 분석한 후, 서비스 규모와 하드웨어 환경(에지 컴퓨팅 vs 클라우드)에 가장 적합한 모델을 선별하여 도입하는 전략이 필요합니다. 특히 Ministral 시리즈와 같은 에지 최적화 모델은 클라우드 비용 절감과 데이터 보안이 중요한 프로젝트에서 훌륭한 대안이 될 것입니다.

사용자의 목소리를 AI로 재현하다: LLM기반 Multi Agent UX플랫폼 개발기 (새 탭에서 열림)

네이버의 'NSona' 프로젝트는 LLM 기반의 멀티 에이전트 시스템을 통해 방대한 사용자 리서치 데이터를 실시간 협업 자원으로 전환하며, 서비스 기획과 실제 개발 사이의 간극을 혁신적으로 줄인 사례를 제시합니다. 디자이너, AI 리서처, 개발자가 협력하여 단순한 기술 구현을 넘어 사용자의 목소리를 생생하게 재현하는 페르소나 봇을 개발함으로써, AI가 도구를 넘어 협업의 주체가 될 수 있음을 증명했습니다. 이를 통해 팀은 사용자의 피드백을 실시간으로 서비스 개발 과정에 투영하고 의사결정의 효율성을 극대화하는 성과를 거두었습니다. **사용자 경험을 재현하는 페르소나 봇 "NSona"** * 기존 UX 리서치가 가진 일회성 데이터의 한계를 극복하고, 리서치 결과를 데일리 협업 과정에서 상시 활용할 수 있는 자산으로 전환하기 위해 기획되었습니다. * 사용자의 특성과 행동 양식을 학습한 페르소나 봇 'NSona'를 통해 기획자나 개발자가 언제든 사용자의 관점에서 서비스에 대한 의견을 물을 수 있는 환경을 구축했습니다. **에이전트 중심의 서비스 구조와 기술적 도전** * 단일 LLM 모델의 한계를 넘어, 특정 서비스 목적에 최적화된 'Agent 중심의 서비스 구조'를 설계하여 보다 정교한 사용자 재현을 시도했습니다. * Multi-Party 대화 시스템을 도입하여 여러 페르소나가 상호작용하며 복합적인 피드백을 제공할 수 있는 기술적 토대를 마련했습니다. * 일반적인 언어 모델 평가 지표 대신, 서비스의 맥락과 UX 요구사항을 반영한 'Service-specific' 평가 프로세스를 독자적으로 구축하여 모델의 품질을 관리했습니다. **AI 시대의 변화된 협업 방식과 R&R** * 전통적인 업무 경계를 허물고 디자이너는 프롬프트를 설계하며, 리서처는 로직을 에이전트 구조로 전환하고, 개발자는 AI를 비평의 대상으로 다루는 새로운 협업 모델을 실천했습니다. * 결과물의 완성도에만 집착하기보다 '어디서 시작점을 찍느냐'에 집중하며, AI를 개발 프로세스의 초기 단계부터 능동적인 파트너로 참여시켰습니다. * 이러한 과정은 직군 간의 선형적인 협업 구조를 유기적인 파장 형태의 협업 구조로 변화시키는 계기가 되었습니다. **사용자 중심 AI 개발을 위한 실무적 제언** 성공적인 AI 서비스를 위해서는 기술적 구현만큼이나 기획, 디자인, 엔지니어링 간의 유기적인 결합이 필수적입니다. NSona의 사례처럼 사용자의 목소리를 데이터 더미가 아닌 대화 가능한 실체로 변환하여 협업의 중심에 배치한다면, 보다 사용자의 니즈에 밀착된 서비스를 더 빠른 속도로 검증하고 개발할 수 있을 것입니다.

FE News 25년 12월 소식을 전해드립니다! (새 탭에서 열림)

2025년 12월 FE News는 LLM의 영향력 확대와 웹 표준 기술의 진화로 인해 급변하는 프런트엔드 생태계의 핵심 흐름을 짚어줍니다. React가 LLM 학습 데이터와의 피드백 루프를 통해 독점적 플랫폼으로 굳어지는 현상과 함께, 브라우저 표준 API의 발전이 프레임워크의 의존도를 낮추는 상반된 양상을 동시에 조명합니다. 또한, Wasm의 본질과 Vercel의 언어적 비전 등 기술적 깊이를 더하는 소식들을 다루고 있습니다. ### WebAssembly에 대한 오해와 진실 * Wasm은 이름과 달리 웹 전용 기술도, 어셈블리 언어도 아닙니다. * 실체는 가상 머신에서 실행되는 바이트코드이며, 성격상 JVM이나 .NET 바이트코드와 유사한 범용 실행 환경을 지향합니다. * 'WebAssembly'라는 명칭은 프로젝트 초기 펀딩을 위해 전략적으로 채택된 네이밍일 뿐입니다. ### LLM 피드백 루프와 React의 독주 * LLM 학습 데이터와 개발 도구(Replit, Bolt 등)가 React를 기본값으로 설정하면서 React가 사실상의 표준 플랫폼으로 자리 잡았습니다. * 새로운 프레임워크가 LLM 학습 데이터에 충분히 반영되기까지는 최소 12~18개월이 소요되며, 그 사이 React는 수천만 개의 사이트를 추가로 생성하며 격차를 벌립니다. * 이러한 자기 강화 루프로 인해 신규 프레임워크가 시장을 점유하기 극도로 어려워지는 'Dead framework theory' 현상이 나타나고 있습니다. ### 분산 시스템을 처리하는 언어로의 진화 * Vercel은 'use cache', 'use workflow' 등의 디렉티브를 통해 분산 시스템의 복잡성을 프로그래밍 언어 수준에서 해결하려는 비전을 제시합니다. * 직렬화 가능한 클로저, 대수적 효과, 점진적 계산이라는 세 가지 핵심 개념을 기반으로 단순한 라이브러리를 넘어선 새로운 언어 구조처럼 작동합니다. * 향후 프로그래밍 언어는 어셈블리와 동시성을 넘어 데이터 관리와 분산 환경의 복잡성을 네이티브로 다루는 방향으로 진화할 전망입니다. ### 프레임워크를 대체하는 네이티브 웹 플랫폼 * Shadow DOM, ES 모듈, Navigation API, View Transitions API 등 브라우저 표준 기능이 과거 프레임워크의 핵심 역할을 대체하기 시작했습니다. * 라우팅, 상태 관리, 컴포넌트 격리 등을 표준 API로 해결함으로써 무거운 번들과 복잡한 추상화 없이도 고성능 애플리케이션 구축이 가능해졌습니다. * 프레임워크는 이제 개발의 필수 요건이 아닌, 필요에 따라 선택하는 영역으로 이동하고 있습니다. ### 집단 지성 기반의 AI 의사결정 시스템: LLM Council * Andrej Karpathy가 개발한 이 시스템은 여러 AI 모델이 민주적으로 협업하여 복잡한 문제를 해결하는 새로운 패러다임을 제시합니다. * '독립적 의견 제시 → 상호 검토 및 순위 매김 → 의장 LLM의 최종 종합'이라는 3단계 프로세스를 통해 단일 모델의 한계를 극복합니다. * GPT-5.1, Claude 4.5 등 다양한 최신 모델의 강점을 결합하여 더 신뢰할 수 있는 답변을 도출하며, 로컬 환경에서 Python과 React 기반으로 간편하게 실행할 수 있습니다. 개발자는 특정 프레임워크의 숙련도에 안주하기보다, 브라우저 표준 기술의 진화를 주시하고 LLM이 주도하는 개발 환경 변화에 유연하게 대응하는 전략이 필요합니다. 웹 기술의 근본적인 변화를 이해하고 표준 API를 적극적으로 활용하는 능력이 더욱 중요해질 것입니다.